When RSSI encounters deep learning: An area localization scheme for pervasive sensing systems

2021 ◽  
Vol 173 ◽  
pp. 102852
Author(s):  
Zhishu Shen ◽  
Tiehua Zhang ◽  
Atsushi Tagami ◽  
Jiong Jin
Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2166
Author(s):  
Kyungeun Park ◽  
Jeongpyo Lee ◽  
Youngok Kim

In this paper, we propose a deep learning-based indoor two-dimensional (2D) localization scheme using a 24 GHz frequency-modulated continuous wave (FMCW) radar. In the proposed scheme, deep neural network and convolutional neural network (CNN) models that use different numbers of FMCW radars were employed to overcome the limitations of the conventional 2D localization scheme that is based on multilateration methods. The performance of the proposed scheme was evaluated experimentally and compared with the conventional scheme under the same conditions. According to the results, the 2D location of the target could be estimated with a proposed single radar scheme, whereas two FMCW radars were required by the conventional scheme. Furthermore, the proposed CNN scheme with two FMCW radars produced an average localization error of 0.23 m, while the error of the conventional scheme with two FMCW radars was 0.53 m.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1055
Author(s):  
Muhammad Asad Bilal Fayyaz ◽  
Christopher Johnson

Multiple projects within the rail industry across different regions have been initiated to address the issue of over-population. These expansion plans and upgrade of technologies increases the number of intersections, junctions, and level crossings. A level crossing is where a railway line is crossed by a road or right of way on the level without the use of a tunnel or bridge. Level crossings still pose a significant risk to the public, which often leads to serious accidents between rail, road, and footpath users and the risk is dependent on their unpredictable behavior. For Great Britain, there were three fatalities and 385 near misses at level crossings in 2015–2016. Furthermore, in its annual safety report, the Rail Safety and Standards Board (RSSB) highlighted the risk of incidents at level crossings during 2016/17 with a further six fatalities at level crossings including four pedestrians and two road vehicles. The relevant authorities have suggested an upgrade of the existing sensing system and the integration of new novel technology at level crossings. The present work addresses this key issue and discusses the current sensing systems along with the relevant algorithms used for post-processing the information. The given information is adequate for a manual operator to make a decision or start an automated operational cycle. Traditional sensors have certain limitations and are often installed as a “single sensor”. The single sensor does not provide sufficient information; hence another sensor is required. The algorithms integrated with these sensing systems rely on the traditional approach, where background pixels are compared with new pixels. Such an approach is not effective in a dynamic and complex environment. The proposed model integrates deep learning technology with the current Vision system (e.g., CCTV to detect and localize an object at a level crossing). The proposed sensing system should be able to detect and localize particular objects (e.g., pedestrians, bicycles, and vehicles at level crossing areas.) The radar system is also discussed for a “two out of two” logic interlocking system in case of fail-mechanism. Different techniques to train a deep learning model are discussed along with their respective results. The model achieved an accuracy of about 88% from the MobileNet model for classification and a loss metric of 0.092 for object detection. Some related future work is also discussed.


2020 ◽  
Vol 13 (1) ◽  
pp. 54
Author(s):  
Leonardo Josoé Biffi ◽  
Edson Mitishita ◽  
Veraldo Liesenberg ◽  
Anderson Aparecido dos Santos ◽  
Diogo Nunes Gonçalves ◽  
...  

In recent years, many agriculture-related problems have been evaluated with the integration of artificial intelligence techniques and remote sensing systems. Specifically, in fruit detection problems, several recent works were developed using Deep Learning (DL) methods applied in images acquired in different acquisition levels. However, the increasing use of anti-hail plastic net cover in commercial orchards highlights the importance of terrestrial remote sensing systems. Apples are one of the most highly-challenging fruits to be detected in images, mainly because of the target occlusion problem occurrence. Additionally, the introduction of high-density apple tree orchards makes the identification of single fruits a real challenge. To support farmers to detect apple fruits efficiently, this paper presents an approach based on the Adaptive Training Sample Selection (ATSS) deep learning method applied to close-range and low-cost terrestrial RGB images. The correct identification supports apple production forecasting and gives local producers a better idea of forthcoming management practices. The main advantage of the ATSS method is that only the center point of the objects is labeled, which is much more practicable and realistic than bounding-box annotations in heavily dense fruit orchards. Additionally, we evaluated other object detection methods such as RetinaNet, Libra Regions with Convolutional Neural Network (R-CNN), Cascade R-CNN, Faster R-CNN, Feature Selective Anchor-Free (FSAF), and High-Resolution Network (HRNet). The study area is a highly-dense apple orchard consisting of Fuji Suprema apple fruits (Malus domestica Borkh) located in a smallholder farm in the state of Santa Catarina (southern Brazil). A total of 398 terrestrial images were taken nearly perpendicularly in front of the trees by a professional camera, assuring both a good vertical coverage of the apple trees in terms of heights and overlapping between picture frames. After, the high-resolution RGB images were divided into several patches for helping the detection of small and/or occluded apples. A total of 3119, 840, and 2010 patches were used for training, validation, and testing, respectively. Moreover, the proposed method’s generalization capability was assessed by applying simulated image corruptions to the test set images with different severity levels, including noise, blurs, weather, and digital processing. Experiments were also conducted by varying the bounding box size (80, 100, 120, 140, 160, and 180 pixels) in the image original for the proposed approach. Our results showed that the ATSS-based method slightly outperformed all other deep learning methods, between 2.4% and 0.3%. Also, we verified that the best result was obtained with a bounding box size of 160 × 160 pixels. The proposed method was robust regarding most of the corruption, except for snow, frost, and fog weather conditions. Finally, a benchmark of the reported dataset is also generated and publicly available.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anis Davoudi ◽  
Kumar Rohit Malhotra ◽  
Benjamin Shickel ◽  
Scott Siegel ◽  
Seth Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document