scholarly journals Simultaneous analysis of dendritic spine density, morphology and excitatory glutamate receptors during neuron maturation in vitro by quantitative immunocytochemistry

2012 ◽  
Vol 207 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Evelyn Nwabuisi-Heath ◽  
Mary Jo LaDu ◽  
Chunjiang Yu
Author(s):  
Stephanie K. Jones ◽  
Jennifer Rha ◽  
Sarah Kim ◽  
Kevin J. Morris ◽  
Omotola F. Omotade ◽  
...  

AbstractZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), an evolutionarily conserved member of a class of tandem zinc finger (CCCH) polyadenosine (polyA) RNA binding proteins, is associated with a form of heritable, nonsyndromic autosomal recessive intellectual disability. Previous studies of a loss of function mouse model, Zc3h14Δex13/Δex13, provide evidence that ZC3H14 is essential for proper brain function, specifically for working memory. To expand on these findings, we analyzed the dendrites and dendritic spines of hippocampal neurons from Zc3h14Δex13/Δex13 mice, both in situ and in vitro. These studies reveal that loss of ZC3H14 is associated with a decrease in total spine density in hippocampal neurons in vitro as well as in the dentate gyrus of 5-month old mice analyzed in situ. This reduction in spine density in vitro results from a decrease in the number of mushroom-shaped spines, which is rescued by exogenous expression of ZC3H14. We next performed biochemical analyses of synaptosomes prepared from whole wild-type and Zc3h14Δex13/Δex13 mouse brains to determine if there are changes in steady state levels of postsynaptic proteins upon loss of ZC3H14. We found that ZC3H14 is present within synaptosomes and that a crucial postsynaptic protein, CaMKIIα, is significantly increased in these synaptosomal fractions upon loss of ZC3H14. Together, these results demonstrate that ZC3H14 is necessary for proper dendritic spine density in cultured hippocampal neurons and in some regions of the mouse brain. These findings provide insight into how a ubiquitously expressed RNA binding protein leads to neuronal-specific defects that result in brain dysfunction.


1997 ◽  
Vol 77 (3) ◽  
pp. 1614-1623 ◽  
Author(s):  
Carlos Collin ◽  
Katsuyuki Miyaguchi ◽  
Menahem Segal

Collin, Carlos, Katsuyuki Miyaguchi, and Menahem Segal.Dendritic spine density and LTP induction in cultured hippocampal slices. J. Neurophysiol. 77: 1614–1623, 1997. Transverse hippocampal slices were cut from 8- to 9-day-old rats and maintained in an interface chamber for periods of 1–4 wk, in tissue culture conditions. Neurons in the slice preserved their spatial organization and connectivity. Dendritic spine density in CA1 neurons was very low at 1 wk in culture, and long, filopodia-like structures were abundant. Spine density increased in these neurons nearly threefold during the course of 3 wk in vitro, to approach values of those of the normal, in vivo hippocampus. The magnitude of long-term potentiation (LTP) of reactivity of CA1 to stimulation of CA3 neurons also increased during weeks in culture in parallel with the change in spine density. Chronic exposure of slices to drugs that interact with synaptic activity caused changes in their dendritic spine density. Blockade of the N-methyl-d-aspartate (NMDA) receptors with the receptor antagonist 2-aminophosphonovalerate (d-APV) or blockade of action potential discharges with tetrodotoxin (TTX) prevented dendritic spine development in immature cultures. Enhancing synaptic activity by blockade of GABAergic inhibition with picrotoxin did not affect spine density to a significant degree. d-APV-treated slices expressed larger LTP than controls. TTX-treated slices expressed smaller LTP than controls. Picrotoxin treated slices did not express LTP. It is proposed that LTP and dendritic spine density are correlated strongly during development, whereas they are not correlated in the more mature slice/culture of the hippocampus where spine density can be modulated by chronic exposure to blockers of synaptic activity, which will not affect LTP in a similar manner.


2021 ◽  
pp. 105253
Author(s):  
Katherine M. Bland ◽  
Adam Aharon ◽  
Eden L. Widener ◽  
M. Irene Song ◽  
Zachary O. Casey ◽  
...  

2017 ◽  
Vol 114 (35) ◽  
pp. 9469-9474 ◽  
Author(s):  
Ethan M. Anderson ◽  
Anne Marie Wissman ◽  
Joyce Chemplanikal ◽  
Nicole Buzin ◽  
Daniel Guzman ◽  
...  

Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.


1998 ◽  
Vol 1 (3) ◽  
pp. 237-242 ◽  
Author(s):  
M.I. Pérez-Vega ◽  
G. Barajas-López ◽  
A.R. del Angel-Meza ◽  
I. González-Burgos ◽  
A. Feria-Velasco

2015 ◽  
Vol 2 ◽  
pp. 67-72 ◽  
Author(s):  
Keith A. Young ◽  
Peter M. Thompson ◽  
Dianne A. Cruz ◽  
Douglas E. Williamson ◽  
Lynn D. Selemon

Sign in / Sign up

Export Citation Format

Share Document