Numerical investigation of low-velocity non-Darcy flow of gas and water in coal seams

2016 ◽  
Vol 34 ◽  
pp. 124-138 ◽  
Author(s):  
Gang Huang ◽  
Hongqing Song ◽  
Yang Cao ◽  
Jiaosheng Yang ◽  
Yuhe Wang ◽  
...  
2019 ◽  
Vol 116 ◽  
pp. 103182 ◽  
Author(s):  
Farideh Hosseinejad ◽  
Farhoud Kalateh ◽  
Alireza Mojtahedi

2021 ◽  
Vol 276 ◽  
pp. 114567
Author(s):  
Amirreza Tarafdar ◽  
Gholamhossein Liaghat ◽  
Hamed Ahmadi ◽  
Omid Razmkhah ◽  
Sahand Chitsaz Charandabi ◽  
...  

2015 ◽  
Vol 665 ◽  
pp. 277-280 ◽  
Author(s):  
Aniello Riccio ◽  
S. Saputo ◽  
A. Sellitto ◽  
A. Raimondo ◽  
R. Ricchiuto

The investigation of fiber-reinforced composite laminates mechanical response under impact loads can be very difficult due to simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damage as fiber and matrix cracking and inter-laminar damage, such as delamination, often take place concurrently, leading to significant reductions in terms of strength and stability for composite structure. In this paper a numerical study is proposed which, by means of non-linear explicit FEM analysis, aims to completely characterize the composite reinforced laminates damage under low velocity impacts. The numerical investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the damage formation and evolution. Five different impact locations with the same impact energy are taken into account to investigate the influence on the onset and growth of damage.


2011 ◽  
Vol 201-203 ◽  
pp. 399-403 ◽  
Author(s):  
Hong Qing Song ◽  
Ming Yue ◽  
Wei Yao Zhu ◽  
Dong Bo He ◽  
Huai Jian Yi

Porous media containing water is the prerequisite of existence of threshold pressure gradient (TPG) for gas flow. Based on theory of fluid mechanics in porous medium considering TPG, the non-Darcy flow mathematical model is established for formation pressure analysis of water-bearing tight gas reservoirs. It could provide semi-analytic solution of unsteady radial non-Darcy flow. According to the solution of unsteady radial non-Darcy flow, an easy and accurate calculation method for formation pressure analysis is presented. It can provide theoretical foundation for development design of water-bearing tight gas reservoirs. The analysis of calculation results demonstrates that the higher TPG is, the smaller formation pressure of water-bearing tight gas reservoirs spreads. In the same output, the reservoir sweep of non-Darcy gas flow is larger than that of non-Darcy liquid flow. And the pressure drop near wellbore is smaller than that of non-Darcy liquid flow, which is different from Darcy flow.


Sign in / Sign up

Export Citation Format

Share Document