Numerical Investigation of a Stiffened Panel Subjected to Low Velocity Impacts

2015 ◽  
Vol 665 ◽  
pp. 277-280 ◽  
Author(s):  
Aniello Riccio ◽  
S. Saputo ◽  
A. Sellitto ◽  
A. Raimondo ◽  
R. Ricchiuto

The investigation of fiber-reinforced composite laminates mechanical response under impact loads can be very difficult due to simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damage as fiber and matrix cracking and inter-laminar damage, such as delamination, often take place concurrently, leading to significant reductions in terms of strength and stability for composite structure. In this paper a numerical study is proposed which, by means of non-linear explicit FEM analysis, aims to completely characterize the composite reinforced laminates damage under low velocity impacts. The numerical investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the damage formation and evolution. Five different impact locations with the same impact energy are taken into account to investigate the influence on the onset and growth of damage.

2016 ◽  
Vol 713 ◽  
pp. 14-17 ◽  
Author(s):  
Aniello Riccio ◽  
S. Saputo ◽  
Andrea Sellitto

Low velocity impacts induce concurring failure phenomena in unidirectional fiber reinforced composites. Hence a refined methodology able to predict the different failure modes and their interaction is mandatory to correctly predict the damage onset and evolution. Indeed, intra-laminar damage and inter-laminar damage often take place concurrently, causing a significant strength reduction up to composite structure collapse. In this paper, a numerical study is proposed which, by means of non-linear explicit FEM analysis, aims to completely characterize the composite reinforced laminates damage under low velocity impacts by introducing a user defined material model in the FEM code ABAQUS. The proposed 3-D numerical investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the damage formation and evolution.


2020 ◽  
Vol 10 (16) ◽  
pp. 5480
Author(s):  
Jong-Il Kim ◽  
Yong-Hak Huh ◽  
Yong-Hwan Kim

The dependency of the static residual tensile strength for the Glass Fiber-Reinforced Plastic (GFRP) laminates after impact on the impact energy level and indent shape is investigated. In this study, two different laminates, unidirectional, [0°2]s) and TRI (tri-axial, (±45°/0°)2]s), were prepared using the vacuum infusion method, and an impact indent on the respective laminates was created at different energy levels with pyramidal and hemispherical impactors. Impact damage patterns, such as matrix cracking, delamination, debonding and fiber breakage, could be observed on the GFRP laminates by a scanning electron microscope (SEM), and it is found that those were dependent on the impactor head shape and laminate structure. Residual in-plane tensile strength of the impacted laminates was measured and the reduction of the strength is found to be dependent upon the impact damage patterns. Furthermore, in this study, stress concentrations in the vicinity of the indents were determined from full-field stress distribution obtained by three-dimensional Digital Image Correlation (3D DIC) measurement. It was found that the stress concentration was associated with the reduction of the residual strength for the GFRP laminates.


2017 ◽  
Vol 121 (1238) ◽  
pp. 515-532 ◽  
Author(s):  
N. Li ◽  
P.H. Chen ◽  
Q. Ye

ABSTRACTA method was developed to predict numerically the damage of composite laminates with multiple plies under low-velocity impact loading. The Puck criterion for 3D stress states was adopted to model the intralaminar damage including matrix cracking and fibre breakage, and to obtain the orientation of the fracture plane due to matrix failure. According to interlaminar delamination mechanism, a new delamination criterion was proposed. The influence of transverse and through-thickness normal stress, interlaminar shear stress and damage conditions of adjacent plies on delamination was considered. In order to predict the impact-induced damage of composite laminates with more plies quickly and efficiently, an approach, which can predict the specific damage of several plies in a single solid element, was proposed by interpolation on the strains of element integration points. Moreover, the proposed model can predict specific failure modes. A good agreement between the predicted delamination shapes and sizes and the experimental results shows correctness of the developed numerical method for predicting low-velocity impact damage on composite laminates.


2010 ◽  
Vol 118-120 ◽  
pp. 216-220 ◽  
Author(s):  
Hao Chen ◽  
Xiao Yan Tong ◽  
Xiang Zheng ◽  
Lei Jiang Yao

One of the problems preventing the industrial application of composites is the lack of an efficient method to detect and discriminate among types of damage occurring during service. To solve this problem, low velocity impact experiments are carried out on T300/QY8911 composite laminates. And synchronously, the acoustic emission (AE) technique and impact monitoring systems were used to record the AE signals and the impact force. The damage evolution, damage modes and acoustic emission (AE) activity were easily detected and evaluated by the analysis of both AE waveform and impact load. In this way, the damage development process containing matrix cracking, delamination and fibers breakage is investigated. The energy release of damage are theoretically approximated and correlated with the AE energy. By the theory, the “high energy damage zone” is defined in the scatter diagrams of amplitude-frequency. It is easily to prove that the primary damage mode of “high energy damage zone” is delamination.


2019 ◽  
Vol 26 (1) ◽  
pp. 1-11
Author(s):  
Jian He ◽  
Liang He ◽  
Bin Yang

AbstractThe effects of units, material parameters, and constitutive relationships on the dynamic mechanical response of composite laminates subjected to high- and low-velocity impacts were investigated. Additionally, the role of impact or shape, including hemispherical, flat, and conical, on the damage area of the adhesive layer and displacement of the center of the laminated plates was investigated. The results show that the energy absorption of composite laminates increases with impact velocity, and specific energy absorption changes with the density of the contact surface, which is affected by ply thickness. Moreover, the target energy absorption decreases with increasing layer angle. Under a low-velocity impact, the maximum contact force, damage area of the adhesive layer, and displacement of the center of the laminated plate increase as the impact energy increases, thus showing that impact energy is not directly related to contact duration and energy absorption of composite laminates. The results of different geometric shapes show that the damage area of the adhesive layer and the displacement of the center of the laminated plates are largest for a conical impactor and smallest for a flat impactor.


2010 ◽  
Vol 24-25 ◽  
pp. 233-238 ◽  
Author(s):  
M.T.H. Sultan ◽  
Alma Hodzic ◽  
W.J. Staszewski ◽  
Keith Worden

The ultimate objective of the current programme of work is to detect and quantify low-velocity impact damage in structures made from composite materials. There are many situations in the use of composites where an impact does not result in perforation of the material but causes damage that may not be visible, yet still causes a substantial reduction in structural properties. Impacts that do not cause perforation are usually termed low-velocity. When a composite structure undergoes such impacts, it is important to know the type and level of damage and assess the residual strength. In this study, following a systematic series of experiments on the induction of impact damage in composite specimens, Scanning Electron Microscopy (SEM) was used to inspect the topographies of the specimens at high magnification. Matrix cracking, fibre fracture, fibre pullout and delamination were the types of damage observed in the composite laminates after the low-velocity impacts. The study also conducted a (very) preliminary correlation between the damage modes and the impact energy.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110232
Author(s):  
Hussein Dalfi ◽  
Anwer J Al-Obaidi ◽  
Hussein Razaq

Recently, high tensile fibres composite laminates (i.e. glass composite laminates) have been widely used in the civil and military applications due to their superior properties such as lightweight, fatigue and corrosion resistance compared to metals. Nevertheless, their brittle fracture behaviour is a real downside for many sectors. In the present study, the impact of the hybridisation of Kevlar woven layers with glass woven layers on the reducing the strain failure problem in pure glass woven laminates is investigated. In this work, multi-layers Kevlar-glass with different stacking sequences have been used to prepare the hybrid composite laminates using vacuum–assisted resin moulding method. The influence of the layers hybridisation on the mechanical performance of composites laminates was investigated using tensile strength tests. Furthermore, finite element analysis is performed to analyse the mechanical response of the hybrid composite laminates using Abaqus software. The elastic constants of woven fabric layers in the numerical study were predicted through geometric model based on the textile geometry and analytical method in order to assert accuracy of the predicted elastic constants. The experimental results showed that the hybrid composite laminates tend to fail more slowly than glass woven laminates, which illustrates low strain to failure. In the theoretical part of the study, it was found that the proposal model can be useful to capture the mechanical behaviour and the damage failure modes of hybrid laminates. Thus, the catastrophic failure can be avoided in these laminates.


2011 ◽  
Vol 284-286 ◽  
pp. 607-610
Author(s):  
Jiang Tao Ruan ◽  
Min Shen ◽  
Jing Wei Tong ◽  
Shi Bin Wang ◽  
Francesco Aymerich ◽  
...  

In this paper, the deformation measurements of impacted and non-impacted composite laminates under compressive loading are taken. [03/903]S orientated cross-ply laminated plates with impact delamination and without delamination are tested using an anti-buckling testing device in compression experiment. The delamination is induced by low-velocity impact test at the impact energy level of 3.105J. For both impacted and non-impacted specimens, the compressive deformation is measured by a carrier electronic speckle pattern interferometry (CESPI) optical measurement technique. It is found that the deformation behavior of the two specimens presents a mixed deformation mode. However, the delamination has significant effect on the compressive deformation of composite laminates.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012087
Author(s):  
Peng Hao ◽  
Lin’an Li ◽  
Jianxun Du

Abstract In order to research the impact mechanical response characteristics of the bio-inspired composite sandwich structure, the hemispherical impactor is preloaded with different energy to impact bio-inspired and conventional composite sandwich structure, the stress distribution and dynamic response characteristics of composite sandwich structure under impact load are studied. The results show that the main damage of the upper panel is fiber shear fracture, while crushing fracture for the core, and the main damage of the lower panel is fiber tensile tearing under different impact load. The bio-inspired composite sandwich structure shows better impact resistance in terms of damage depth and maximum impact load under the same impact energy. From the perspective of energy consumption, the bio-inspired structure absorbed more energy than conventional structure under high energy impact.


2019 ◽  
Vol 9 (11) ◽  
pp. 2372 ◽  
Author(s):  
Andrea Sellitto ◽  
Salvatore Saputo ◽  
Francesco Di Caprio ◽  
Aniello Riccio ◽  
Angela Russo ◽  
...  

Composite laminates are characterized by high mechanical in-plane properties and poor out-of-plane characteristics. This issue becomes even more relevant when dealing with impact phenomena occurring in the transverse direction. In aeronautics, Low Velocity Impacts (LVIs) may occur during the service life of the aircraft. LVI may produce damage inside the laminate, which are not easily detectable and can seriously degrade the mechanical properties of the structure. In this paper, a numerical-experimental investigation is carried out, in order to study the mechanical behavior of rectangular laminated specimens subjected to low velocity impacts. The numerical model that best represents the impact phenomenon has been chosen by numerical–analytical investigations. A user defined material model (VUMAT) has been developed in Abaqus/Explicit environment to simulate the composite intra-laminar damage behavior in solid elements. The analyses results were compared to experimental test data on a laminated specimen, performed according to ASTM D7136 standard, in order to verify the robustness of the adopted numerical model and the influence of modeling parameters on the accuracy of numerical results.


Sign in / Sign up

Export Citation Format

Share Document