Experiment and numerical simulation of sand particle erosion under slug flow condition in a horizontal pipe bend

2020 ◽  
Vol 76 ◽  
pp. 103175 ◽  
Author(s):  
Wenshan Peng ◽  
Xuewen Cao ◽  
Jian Hou ◽  
Kun Xu ◽  
Yin Fan ◽  
...  
Author(s):  
Afshin Goharzadeh ◽  
Peter Rodgers ◽  
Chokri Touati

This paper presents an experimental study of three phase flows (air-water-sand) inside a horizontal pipe. The results obtained aim to enhance the fundamental understanding of sand transportation due to saltation in the presence of slug flow. Sand dune pitch, height and front velocity were measured using high-speed video photography. Four flow compositions with differing gas ratios, including hydraulic conveying, were assessed for sand transportation, having the same mixture velocity. For the test conditions under analysis, it was found that the gas ratio did not affect the average dune front velocity. However, for slug flows, the sand bed was transported further downstream relative to hydraulic conveying. It was also observed that the slug body significantly influences sand particle mobility. The physical mechanism of sand transportation was found to be discontinuous with slug flows. The sand dune local velocity (inside the slug body) was measured to be three times higher than the averaged dune velocities.


Author(s):  
Afshin Goharzadeh ◽  
Peter Rodgers

This paper presents an experimental study of gas-liquid slug flow inside a horizontal pipe. The influence of air bubble passage on liquid flow is characterized using Particle Image Velocimetry (PIV) combined with Refractive Index Matching (RIM) and fluorescent tracers. A physical insight into the velocity distribution within slug flow is presented. It was observed that the slug flow significantly influences the velocity profile in the liquid film. Measured velocity distributions also revealed a significant drop in the velocity magnitude immediately upstream of the slug nose. These findings aim to aid an understanding of the mechanism of solid transportation in slug flows.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Afshin Goharzadeh ◽  
Peter Rodgers ◽  
Chokri Touati

This paper presents an experimental study of three-phase flows (air-water-sand) inside a horizontal pipe. The results obtained aim to enhance the fundamental understanding of sand transportation due to saltation in the presence of a gas-liquid two-phase intermittent flow. Sand dune pitch, length, height, and front velocity were measured using high-speed video photography. Four flow compositions with differing gas ratios, including hydraulic conveying, were assessed for sand transportation, having the same mixture velocity. For the test conditions under analysis, it was found that the gas ratio did not affect the average dune front velocity. However, for intermittent flows, the sand bed was transported further downstream relative to hydraulic conveying. It was also observed that the slug body significantly influences sand particle mobility. The physical mechanism of sand transportation was found to be discontinuous with intermittent flows. The sand dune local velocity (within the slug body) was measured to be three times higher than the averaged dune velocities, due to turbulent enhancement within the slug body.


2016 ◽  
Vol 20 (9) ◽  
pp. 1626-1632 ◽  
Author(s):  
Momoe Nakano ◽  
Yasuhiro Nishiyama ◽  
Hiroki Tanimoto ◽  
Tsumoru Morimoto ◽  
Kiyomi Kakiuchi

2018 ◽  
Author(s):  
Hasanain A. Abdul Wahhab ◽  
A. Rashid A. Aziz ◽  
Hussain H. Al-Kayiem ◽  
Mohammad S. Nasif ◽  
Mohammed El-Adawy

Sign in / Sign up

Export Citation Format

Share Document