Influences of particle micro behavior on gas-hydrate slurry flow pattern in pipeline

Author(s):  
Xuewen Cao ◽  
Kairan Yang ◽  
Yaxin Zhang ◽  
Wen Yang ◽  
Jiang Bian
Keyword(s):  
Author(s):  
Shupeng Yao ◽  
Yuxing Li ◽  
Wuchang Wang ◽  
Guangchun Song ◽  
Zhengzhuo Shi ◽  
...  

The marine area is the main direction of the development of oil and gas resources in the world. The pipeline transportation technology of natural gas hydrate slurry plays an important role in the exploitation of marine oil and gas and the exploitation of marine gas hydrate resources. In order to study the influence of pipe inclination on pipeline transportation, population balance model based on hydrate particle aggregation dynamics was coupled with the Eulerian–Eulerian two-fluid multiphase flow model to simulate the flow behaviors of hydrate slurry flow in pipes with different inclination angles. In the study, three variables of inclination, flow rate and initial particle size were considered. The results show that tilted pipes are beneficial to hydrate slurry transport rather than harmful. Meanwhile, higher flow rates and lower initial particle sizes are beneficial for promoting the flow safety of hydrate slurry transport. However, the flow pressure drop of the hydrate slurry increases with the increase of the flow rate and the decrease of the initial particle size, which is not conducive to the economics of mining. The research results in this paper can provide reference for the research of hydrate slurry flow safety and parameter guidance for hydrate solid fluidized mining.


2016 ◽  
Vol 146 ◽  
pp. 199-206 ◽  
Author(s):  
Lin Ding ◽  
Bohui Shi ◽  
Xiaofang Lv ◽  
Yang Liu ◽  
Haihao Wu ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Bohui Shi ◽  
Jiaqi Wang ◽  
Yifan Yu ◽  
Lin Ding ◽  
Yang Liu ◽  
...  

A stability criterion for gas-hydrate slurry stratified flow was developed. The model was based on one-dimensional gas-liquid two-fluid model and perturbation method, considering unstable factors including shear stress, gravity, and surface tension. In addition, mass transfer between gas and liquid phase caused by hydrate formation was taken into account by implementing an inward and outward natural gas hydrates growth shell model for water-in-oil emulsion. A series of gas-hydrate slurry flow experiments were carried out in a high-pressure (>10 MPa) horizontal flow loop. The transition criterion of smooth stratified flow to other flow patterns for gas-hydrate slurry flow was established and validated and combined with experimental data at different water cuts. Meanwhile, parameters of this stability criterion were defined. This stability criterion was proved to be efficient for predicting the transition from smooth to nonsmooth stratified flow for gas-hydrate slurry.


2013 ◽  
Vol 27 (12) ◽  
pp. 7294-7302 ◽  
Author(s):  
Xiaofang Lv ◽  
Bohui Shi ◽  
Ying Wang ◽  
Jing Gong

2012 ◽  
Author(s):  
Xiaofang Lv ◽  
Jing Gong ◽  
Wenqing Li ◽  
Bohui Shi ◽  
Da Yu ◽  
...  

Author(s):  
Y. Pan

The D defect, which causes the degradation of gate oxide integrities (GOI), can be revealed by Secco etching as flow pattern defect (FPD) in both float zone (FZ) and Czochralski (Cz) silicon crystal or as crystal originated particles (COP) by a multiple-step SC-1 cleaning process. By decreasing the crystal growth rate or high temperature annealing, the FPD density can be reduced, while the D defectsize increased. During the etching, the FPD surface density and etch pit size (FPD #1) increased withthe etch depth, while the wedge shaped contours do not change their positions and curvatures (FIG.l).In this paper, with atomic force microscopy (AFM), a simple model for FPD morphology by non-crystallographic preferential etching, such as Secco etching, was established.One sample wafer (FPD #2) was Secco etched with surface removed by 4 μm (FIG.2). The cross section view shows the FPD has a circular saucer pit and the wedge contours are actually the side surfaces of a terrace structure with very small slopes. Note that the scale in z direction is purposely enhanced in the AFM images. The pit dimensions are listed in TABLE 1.


Sign in / Sign up

Export Citation Format

Share Document