Tuning mechanical and corrosion performance of SiOC glass coatings prepared by thermal MOCVD

2022 ◽  
Vol 579 ◽  
pp. 121378
Author(s):  
Housheng Liu ◽  
Naeem ul Haq Tariq ◽  
Weichen Jing ◽  
Xinyu Cui ◽  
Mingqiang Tang ◽  
...  
Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract ZERON 100 is a super duplex stainless steel which is manufactured to give a guaranteed corrosion performance by using an equation to control the chemistry in those elements which will determine the corrosion resistance of the material. Major usages in seawater applications, particularly offshore oil gathering systems. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: SS-555. Producer or source: Weir Material Services Ltd.


2021 ◽  
Vol 1107 (1) ◽  
pp. 012121
Author(s):  
N. E. Udoye ◽  
O. J. Nnamba ◽  
O. S. I. Fayomi ◽  
A. O. Inegbenebor

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 929
Author(s):  
Dandan Liang ◽  
Jo-Chi Tseng ◽  
Xiaodi Liu ◽  
Yuanfei Cai ◽  
Gang Xu ◽  
...  

This study investigated the structural heterogeneity, mechanical property, electrochemical behavior, and passive film characteristics of Fe–Cr–Mo–W–C–B–Y metallic glasses (MGs), which were modified through annealing at different temperatures. Results showed that annealing MGs below the glass transition temperature enhanced corrosion resistance in HCl solution owing to a highly protective passive film formed, originating from the decreased free volume and the shrinkage of the first coordination shell, which was found by pair distribution function analysis. In contrast, the enlarged first coordination shell and nanoscale crystal-like clusters were identified for MGs annealed in the supercooled liquid region, which led to a destabilized passive film and thereby deteriorated corrosion resistance. This finding reveals the crucial role of structural heterogeneity in tuning the corrosion performance of MGs.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 251
Author(s):  
Jijia Zhang ◽  
Jihu Wang ◽  
Shaoguo Wen ◽  
Siwei Li ◽  
Yabo Chen ◽  
...  

In this paper, an environmentally friendly waterborne polyurea (WPUA) emulsion and its corresponding coating were prepared, which was characterized by dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). To improve the performance of the coating, we doped sulfonated graphene (SG) into WPUA to prepare composite coating (SG/WPUA). SG can be uniformly dispersed in WPUA emulsion and is stable for a long time (28 days) without delamination. The water resistance of the composite coating with 0.3 wt.% SG nanofiller was improved; the water contact angle (WCA) result was SG/WPUA (89°) > WPUA (48.5°), and water absorption result was SG/WPUA (2.90%) < WPUA (9.98%). After water immersion treatment, SEM observation revealed that the SG/WPUA film only generated enlarged microcracks (100 nm) instead of holes (150–400 nm, WPUA film). Polarization curves and electrochemical impedance spectroscopy (EIS) tests show that SG nanosheets with low doping content (0.3 wt.%) are more conducive to the corrosion resistance of WPUA coatings, and the model was established to explain the mechanism.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4045
Author(s):  
Rafał Mech ◽  
Jolanta Gąsiorek ◽  
Amadeusz Łaszcz ◽  
Bartosz Babiarczuk

The paper presents a comparison of the results of the corrosion resistance for three Fe-B-Co-Si-based newly developed alloys with the addition of Nb and V. The corrosion performance differences and microstructure variations were systematically studied using scanning electron microscope, electric corrosion equipment, X-ray diffractometer, and differential calorimeter. It has been shown that each alloying addition increased the corrosion resistance. The highest corrosion resistance obtained by potentiodynamic polarization was found for the alloy with both Nb and V addons (Fe57Co10B20Si5Nb4V4) and lowest in the case of the basic four-element Fe62Co15B14Si9 material. This shows that the proper choice of additions is of significant influence on the final performance of the alloy and allows tailoring of the material for specific applications.


Author(s):  
Oktay Yigit ◽  
Burak Dikici ◽  
Niyazi Ozdemir

AbstractThe hybrid coatings containing the graphene nano-sheet (GNS) and nano-hydroxyapatite (nHA) phases have been successfully synthesized on Ti6Al7Nb alloys by a one-step hydrothermal method. The hydrothermal reaction was carried out for 24 h at 200 °C. The GNS ratio has been altered as 1, 3, 5 and 7 wt.% in the coatings and, the results have compared with non- GNS containing coatings. The effect of the GNS ratio on the microstructure, hardness, and in vitro corrosion responses has been investigated in detail. The characterizations of the coatings were carried out by SEM, EDS, AFM, XRD and, FTIR. The corrosion behavior of the hybrid coatings was compared in Kokubo’s solution at 37 °C by using potentiodynamic polarization tests. The results showed that the hydroxyapatite phases were deposed on the graphene layers with nano-size nucleation with its Ca/P stoichiometric ratio. The best hydrophilicity (~52°) property has been obtained in nHA/3GNS coatings. In addition, the corrosion rates of coatings increased in the following order: nHA/3GNS < nHA/1GNS < nHA/7GNS < nHA/5GNS < only nHA.


Sign in / Sign up

Export Citation Format

Share Document