Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water

2007 ◽  
Vol 367-370 ◽  
pp. 1185-1189 ◽  
Author(s):  
T. Hirose ◽  
K. Shiba ◽  
M. Enoeda ◽  
M. Akiba
2013 ◽  
Vol 747-748 ◽  
pp. 723-732 ◽  
Author(s):  
Ru Xiong ◽  
Ying Jie Qiao ◽  
Gui Liang Liu

This discussion reviewed the occurrence of stress corrosion cracking (SCC) of alloys 182 and 82 weld metals in primary water (PWSCC) of pressurized water reactors (PWR) from both operating plants and laboratory experiments. Results from in-service experience showed that more than 340 Alloy 182/82 welds have sustained PWSCC. Most of these cases have been attributed to the presence of high residual stresses produced during the manufacture aside from the inherent tendency for Alloy 182/82 to sustain SCC. The affected welds were not subjected to a stress relief heat treatment with adjacent low alloy steel components. Results from laboratory studies indicated that time-to-cracking of Alloy 82 was a factor of 4 to 10 longer than that for Alloy 182. PWSCC depended strongly on the surface condition, surface residual stresses and surface cold work, which were consistent with the results of in-service failures. Improvements in the resistance of advanced weld metals, Alloys 152 and 52, to PWSCC were discussed.


Author(s):  
J. Broussard ◽  
P. Crooker

The US Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are working cooperatively under a memorandum of understanding to validate welding residual stress predictions in pressurized water reactor primary cooling loop components containing dissimilar metal welds. These stresses are of interest as DM welds in pressurized water reactors are susceptible to primary water stress corrosion cracking (PWSCC) and tensile weld residual stresses are one of the primary drivers of this stress corrosion cracking mechanism. The NRC/EPRI weld residual stress (WRS) program currently consists of four phases, with each phase increasing in complexity from lab size specimens to component mock-ups and ex-plant material. This paper describes the Phase 1 program, which comprised an initial period of learning and research for both FEA methods and measurement techniques using simple welded specimens. The Phase 1 specimens include a number of plate and cylinder geometries, each designed to provide a controlled configuration for maximum repeatability of measurements and modeling. A spectrum of surface and through-wall residual stress measurement techniques have been explored using the Phase 1 specimens, including incremental hole drilling, ring-core, and x-ray diffraction for surface stresses and neutron diffraction, deep-hole drilling, and contour method for through-wall stresses. The measured residual stresses are compared to the predicted stress results from a number of researchers employing a variety of modeling techniques. Comparisons between the various measurement techniques and among the modeling results have allowed for greater insight into the impact of various parameters on predicted versus measured residual stress. This paper will also discuss the technical challenges and lessons learned as part of the DM weld materials residual stress measurements.


Author(s):  
G. Angah Miessi ◽  
Peter C. Riccardella ◽  
Peihua Jing

Weld overlays have been used to remedy intergranular stress corrosion cracking (IGSCC) in boiling water reactors (BWRs) since the 1980s. Overlays have also been applied in the last few years in pressurized water reactors (PWRs) where primary water stress corrosion cracking (PWSCC) has developed. The weld overlay provides a structural reinforcement with SCC resistant material and favorable residual stresses at the ID of the overlaid component. Leak-before-break (LBB) had been applied to several piping systems in PWRs prior to recognizing the PWSCC susceptibility of Alloy 82/182 welds. The application of the weld overlay changes the geometric configuration of the component and as such, the original LBB evaluation is updated to reflect the new configuration at the susceptible weld. This paper describes a generic leak-before-break (LBB) analysis program which demonstrates that the application of weld overlays always improves LBB margins, relative to un-overlaid, PWSCC susceptible welds when all the other parameters or variables of the analyses (loads, geometry, operating conditions, analysis method, etc…) are kept equal. Analyses are performed using LBB methodology previously approved by the US NRC for weld overlaid components. The analyses are performed for a range of nozzle sizes (from 6″ to 34″) spanning the nominal pipe sizes to which LBB has been commonly applied, using associated representative loads and operating conditions. The analyses are performed for both overlaid and un-overlaid configurations of the same nozzles, and using both fatigue and PWSCC crack morphologies in the leakage rate calculations and the LBB margins are compared to show the benefit of the weld overlays.


Author(s):  
Akihiro Mano ◽  
Jinya Katsuyama ◽  
Yinsheng Li

Abstract A probabilistic fracture mechanics (PFM) analysis code, PASCAL-SP, has been developed by Japan Atomic Energy Agency (JAEA) to evaluate the failure probability of piping within nuclear power plants considering aged-related degradations such as stress corrosion cracking and fatigue for both pressurized water reactor and boiling water reactor environments. To strengthen the applicability of PASCAL-SP, a benchmarking study is being performed with a PFM analysis code, xLPR, which has been developed by U.S.NRC in collaboration with EPRI. In this benchmarking study, deterministic and probabilistic analyses are undertaken on primary water stress corrosion cracking using the common analysis conditions. A deterministic analysis on the weld residual stress distributions is also considered. These analyses are carried out by U.S.NRC and JAEA independently using their own codes. Currently, the deterministic analyses by both xLPR and PASCAL-SP codes have been finished and probabilistic analyses are underway. This paper presents the details of conditions and comparisons of the results between the two aforementioned codes for the deterministic analyses. Both codes were found to provide almost the same results including the values of stress intensity factor. The conditions and results of the probabilistic analysis obtained from PASCAL-SP are also discussed.


Author(s):  
Francois Vaillant ◽  
Thierry Couvant ◽  
Jean-Marie Boursier ◽  
Claude Amzallag ◽  
Yves Rouillon ◽  
...  

Austenitic Stainless Steels (ASS) are widespread in primary and auxiliary circuits of Pressurized Water Reactors (PWRs). Moreover, some components suffer stress corrosion cracking (SCC) under neutron irradiation. This degradation could be the result of the increase of hardness and / or the modification of chemical composition at the grain boundary by irradiation. In order to avoid complex and costly corrosion facilities, the effects of radiation hardening on the material are commonly simulated by applying a pre-strain on non-irradiated material prior to stress corrosion cracking tests. The typical features of the cracking process in primary environment at 360°C during CERTs included an initiation stage (composed of a true initiation time and a slow propagation regime leading to a crack depth lower than 50 μm), then a “rapid” propagation stage before mechanical failure. Pre-straining increased significantly CGRs and the mode of pre-straining could strongly modify the crack path. No significant cracking (< 50 μm) was obtained under a pure static loading. A dynamic loading (CERT or cyclic) was required and various thresholds (hardness, elongation, stress) for the occurrence of SCC were determined. An important R&D program is in progress to develop initiation and propagation models for SCC of austenitic SS in primary environment.


CORROSION ◽  
2011 ◽  
Vol 67 (8) ◽  
pp. 085004-1-085004-9 ◽  
Author(s):  
L.I.L. Lima ◽  
M.M.A.M. Schvartzman ◽  
C.A. Figueiredo ◽  
A.Q. Bracarense

Abstract The weld used to connect two different metals is known as a dissimilar metal weld (DMW). In nuclear power plants, this weld is used to join stainless steel to low-alloy steel components in the nuclear pressurized water reactor (PWR). The most common weld metal is Alloy 182 (UNS W86182). Originally selected for its high corrosion resistance, it exhibited, after a long operation period, susceptibility to stress corrosion cracking (SCC) in PWR. The goal of this work was to study the electrochemical corrosion behavior and SCC susceptibility of Alloy 182 weld in PWR primary water containing 25 cm3 and 50 cm3 H2/kg H2O at standard temperature and pressure (STP). For this purpose, slow strain rate tensile (SSRT) tests and potentiodynamic polarization measurements were carried out. Scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) was used to evaluate fracture morphology and determine the oxide layer chemical composition and morphology. The results indicated that at 325°C Alloy 182 weld is more susceptible to SCC at 25 cm3 (STP) H2/kg H2O and the increase of dissolved hydrogen decreased the crystal size of the oxide layer.


Sign in / Sign up

Export Citation Format

Share Document