Corrosion behavior of Fe-based candidate accident tolerant fuel cladding alloys in spent fuel pool environment ― Effect of prior corrosion

2021 ◽  
Vol 548 ◽  
pp. 152845
Author(s):  
Qian Xiao ◽  
Changheui Jang ◽  
Chaewon Kim ◽  
Junjie Chen ◽  
Chaewon Jeong ◽  
...  
Author(s):  
He Kai ◽  
Song Zifan ◽  
Zheng Yuntao ◽  
Jiang Xiaochuan ◽  
Yang Changjiang ◽  
...  

Author(s):  
Yoshiyuki Nemoto ◽  
Yoshiyuki Kaji ◽  
Toru Kanazawa ◽  
Kazuo Nakashima ◽  
Masayuki Tojo

2017 ◽  
Vol 66 (5) ◽  
pp. 180-187
Author(s):  
Yoshiyuki Nemoto ◽  
Yoshiyuki Kaji ◽  
Chihiro Ogawa ◽  
Kazuo Nakashima ◽  
Masayuki Tojo

Author(s):  
Zhixin Xu ◽  
Ming Wang ◽  
Binyan Song ◽  
WenYu Hou ◽  
Chao Wang

The Fukushima nuclear disaster has raised the importance on the reliability and risk research of the spent fuel pool (SFP), including the risk of internal events, fire, external hazards and so on. From a safety point of view, the low decay heat of the spent fuel assemblies and large water inventory in the SFP has made the accident progress goes very slow, but a large number of fuel assemblies are stored inside the spent fuel pool and without containment above the SFP building, it still has an unignored risk to the safety of the nuclear power plant. In this paper, a standardized approach for performing a holistic and comprehensive evaluation approach of the SFP risk based on the probabilistic safety analysis (PSA) method has been developed, including the Level 1 SFP PSA and Level 2 SFP PSA and external hazard PSA. The research scope of SFP PSA covers internal events, internal flooding, internal fires, external hazards and new risk source-fuel route risk is also included. The research will provide the risk insight of Spent Fuel Pool operation, and can help to make recommendation for the prevention and mitigation of SFP accidents which will be applicable for the SFP configuration risk management.


Author(s):  
Daogang Lu ◽  
Yu Liu ◽  
Shu Zheng

Free standing spent fuel storage racks are submerged in water contained with spent fuel pool. During a postulated earthquake, the water surrounding the racks is accelerated and the so-called fluid-structure interaction (FSI) is significantly induced between water, racks and the pool walls[1]. The added mass is an important input parameter for the dynamic structural analysis of the spent fuel storage rack under earthquake[2]. The spent fuel storage rack is different even for the same vendors. Some rack are designed as the honeycomb construction, others are designed as the end-tube-connection construction. Therefore, the added mass for those racks have to be measured for the new rack’s design. More importantly, the added mass is influenced by the layout of the rack in the spent fuel pool. In this paper, an experiment is carried out to measure the added mass by free vibration test. The measured fluid force of the rack is analyzed by Fourier analysis to derive its vibration frequency. The added mass is then evaluated by the vibration frequency in the air and water. Moreover, a two dimensional CFD model of the spent fuel rack immersed in the water tank is built. The fluid force is obtained by a transient analysis with the help of dynamics mesh method.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205228 ◽  
Author(s):  
Rosane Silva ◽  
Darcy Muniz de Almeida ◽  
Bianca Catarina Azeredo Cabral ◽  
Victor Hugo Giordano Dias ◽  
Isadora Cristina de Toledo e Mello ◽  
...  

2014 ◽  
Vol 1665 ◽  
pp. 195-202 ◽  
Author(s):  
Osamu Kato ◽  
Hiromi Tanabe ◽  
Tomofumi Sakuragi ◽  
Tsutomu Nishimura ◽  
Tsuyoshi Tateishi

ABSTRACTCorrosion behavior is a key issue in the assessment of disposal performance for activated waste such as spent fuel assemblies (i.e., hulls and end-pieces) because corrosion is expected to initiate radionuclide (e.g., C-14) leaching from such waste. Because the anticipated corrosion rate is extremely low, understanding and modeling Zircaloy (Zry) corrosion behavior under geological disposal conditions is important in predicting very long-term corrosion. Corrosion models applicable in the higher temperature ranges of nuclear reactors have been proposed based on considerable testing in the 523−633 K temperature range.In this study, corrosion tests were carried out to confirm the applicability of such existing models to the low temperature range of geological disposal, and to examine the influence of material, environmental, and other factors on corrosion rates under geological disposal conditions. A characterization analysis of the generated oxide film was also performed.To confirm applicability, the corrosion rate of Zry-4 in pure water with a temperature change from 303 K to 433 K was obtained using a hydrogen measuring technique, giving a corrosion rate for 180 days of 8 × 10-3 μm/y at 303 K.To investigate the influence of various factors, corrosion tests were carried out. The corrosion rates for Zry-2 and Zry-4 were almost same, and increased with a temperature increase from 303 K to 353 K. The influence of pH (12.5) compared with pure water was about 1.4 at 180 days at 303 K.


2021 ◽  
Vol 7 (1) ◽  
pp. 9-13
Author(s):  
David A. Hakobyan ◽  
Victor I. Slobodchuk

The problems of reprocessing and long-term storage of spent nuclear fuel (SNF) at nuclear power plants with RBMK reactors have not been fully resolved so far. For this reason, nuclear power plants are forced to search for new options for the disposal of spent fuel, which can provide at least temporary SNF storage. One of the possible solutions to this problem is to switch to compacted SNF storage in reactor spent fuel pools (SFPs). As the number of spent fuel assemblies (SFAs) in SFPs increases, a greater amount of heat is released. In addition, no less important is the fact that a place for emergency FA discharging should be provided in SFPs. The paper presents the results of a numerical simulation of the temperature conditions in SFPs both for compacted SNF storage and for emergency FA discharging. Several types of disturbances in normal SFP cooling mode are considered, including partial loss of cooling water and exposure of SFAs. The simulation was performed using the ANSYS CFX software tool. Estimates were made of the time for heating water to the boiling point, as well as the time for heating the cladding of the fuel elements to a temperature of 650 °С. The most critical conditions are observed in the emergency FA discharging compartment. The results obtained make it possible to estimate the time that the personnel have to restore normal cooling mode of the spent fuel pool until the maximum temperature for water and spent fuel assemblies is reached.


Sign in / Sign up

Export Citation Format

Share Document