Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase

2016 ◽  
Vol 27 ◽  
pp. 299-306 ◽  
Author(s):  
Hanying Zhang ◽  
Min Du ◽  
Qiyuan Yang ◽  
Mei-Jun Zhu
2011 ◽  
Vol 16 (7) ◽  
pp. 803-814 ◽  
Author(s):  
Takuma Ishizaki ◽  
Taiga Tamiya ◽  
Koji Taniguchi ◽  
Rimpei Morita ◽  
Reiko Kato ◽  
...  

2019 ◽  
Vol 26 (12) ◽  
pp. 887-892
Author(s):  
Cynarha Daysy Cardoso da Silva ◽  
Cristiane Moutinho Lagos de Melo ◽  
Elba Verônica Matoso Maciel Carvalho ◽  
Mércia Andréa Lino da Silva ◽  
Rosiely Félix Bezerra ◽  
...  

Background: Lectins have been studied in recent years due to their immunomodulatory activities. Objective: We purified a lectin named OniL from tilapia fish (Oreochromis niloticus) and here we analyzed the cell proliferation and cytokine production in Balb/c mice splenocytes. Methods: Cells were stimulated in vitro in 24, 48, 72 hours and 6 days with different concentrations of OniL and Con A. Evaluation of cell proliferation was performed through [3H]-thymidine incorporation, cytokines were investigated using ELISA assay and cell viability assay was performed by investigation of damage through signals of apoptosis and necrosis. Results: OniL did not promote significant cell death, induced high mitogenic activity in relation to control and Con A and stimulated the cells to release high IL-2 and IL-6 cytokines. Conclusion: These findings suggest that, like Con A, OniL lectin can be used as a mitogenic agent in immunostimulatory assays.


Author(s):  
Pratibha Gaur ◽  
Fidan Rahimli Alekberli ◽  
Laila Karra ◽  
David Mankuta ◽  
Micha Ben Zimra ◽  
...  

Author(s):  
Ni Yang ◽  
Hai Wang ◽  
Li Zhang ◽  
Junhua Lv ◽  
Zequn Niu ◽  
...  

Abstract Acute kidney injury (AKI) is a complex syndrome with an abrupt decrease of kidney function, which is associated with high morbidity and mortality. Sepsis is the common cause of AKI. Mounting evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of sepsis-induced AKI. In this study, we aimed to illustrate the function and mechanism of lncRNA SNHG14 in lipopolysaccharide (LPS)-induced AKI. We found that SNHG14 was highly expressed in the plasma of sepsis patients with AKI. SNHG14 inhibited cell proliferation and autophagy and promoted cell apoptosis and inflammatory cytokine production in LPS-stimulated HK-2 cells. Functionally, SNHG14 acted as a competing endogenous RNA (ceRNA) to negatively regulate miR-495-3p expression in HK-2 cells. Furthermore, we identified that HIPK1 is a direct target of miR-495-3p in HK-2 cells. We also revealed that the SNHG14/miR-495-3p/HIPK1 interaction network regulated HK-2 cell proliferation, apoptosis, autophagy, and inflammatory cytokine production upon LPS stimulation. In addition, we demonstrated that the SNHG14/miR-495-3p/HIPK1 interaction network regulated the production of inflammatory cytokines (TNF-α, IL-6, and IL-1β) via modulating NF-κB/p65 signaling in LPS-challenged HK-2 cells. In conclusion, our findings suggested a novel therapeutic axis of SNHG14/miR-495-3p/HIPK1 to treat sepsis-induced AKI.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1606
Author(s):  
Peter Seiringer ◽  
Stefanie Eyerich ◽  
Kilian Eyerich ◽  
Daniela Dittlein ◽  
Anna Caroline Pilz ◽  
...  

Whilst the importance of keratinocytes as a first-line defense has been widely investigated, little is known about their interactions with non-resident immune cells. In this study, the impact of human keratinocytes on T cell effector functions was analyzed in an antigen-specific in vitro model of allergic contact dermatitis (ACD) to nickel sulfate. Keratinocytes partially inhibited T cell proliferation and cytokine production. This effect was dependent on the keratinocyte/T cell ratio and was partially reversible by increasing the number of autologous dendritic cells. The inhibition of T cell proliferation by keratinocytes was independent of the T cell subtype and antigen presentation by different professional antigen-presenting cells. Autologous and heterologous keratinocytes showed comparable effects, while the fixation of keratinocytes with paraformaldehyde abrogated the immunosuppressive effect. The separation of keratinocytes and T cells by a transwell chamber, as well as a cell-free keratinocyte supernatant, inhibited T cell effector functions to the same amount as directly co-cultured keratinocytes, thus proving that soluble factor/s account for the observed suppressive effects. In conclusion, keratinocytes critically control the threshold of inflammatory processes in the skin by inhibiting T cell proliferation and cytokine production.


2012 ◽  
Vol 287 (49) ◽  
pp. 40924-40937 ◽  
Author(s):  
Inga Bauer ◽  
Alessia Grozio ◽  
Denise Lasigliè ◽  
Giovanna Basile ◽  
Laura Sturla ◽  
...  

1977 ◽  
Vol 42 (2) ◽  
pp. 174-178 ◽  
Author(s):  
A. Tucker ◽  
I. F. McMurtry ◽  
A. F. Alexander ◽  
J. T. Reeves ◽  
R. F. Grover

Changes in the density and distribution of pulmonary mast cells were determined in six mammalian species exposed to hypobaric hypoxia (PB = 435 Torr) for 19–48 days. Control animals were studied at 1,600 m (PB = 635 Torr). Total lung mast cell hyperplasia was observed only in calves exposed to high altitude. Pigs, rats, and sheep exhibited small, but insignificant, increases in mast cell density. Perivascular mast cell proliferation adjacent to vessels of 30–500 mum in diameter was seen in both calves and pigs. Bronchial, alveolar septal, and systemic tissue (tongue) mast cell hyperplasia was not observed in any of the species. Three indices of pulmonary hypertension (right ventricular hypertrophy, medial thickness of pulmonary arteries, and pulmonary arterial pressure) correlated with perivascular mast cell density. The findings indicate that perivascular mast cell proliferation may relate more to the morphological pulmonary vascular changes and to pulmonary hypertension than to hypoxia, leading to the speculation that mast cells increase in number in response to the hypertension, rather than to mediate and maintain the hypertension.


Sign in / Sign up

Export Citation Format

Share Document