Effect of liquid rubber modification on the bond behavior of externally bonded FRP laminate-concrete interface under dynamic loading

2020 ◽  
Vol 32 ◽  
pp. 101533
Author(s):  
Jia-Wei Shi ◽  
Wen-Hai Cao ◽  
Bing-Lei Xu
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1154
Author(s):  
Dario De Domenico ◽  
Antonino Quattrocchi ◽  
Damiano Alizzio ◽  
Roberto Montanini ◽  
Santi Urso ◽  
...  

Digital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate. This represents a widespread strengthening technique of existing reinforced concrete structures, but its effectiveness is strongly related to the bond behavior between composite fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different environmental conditions (humidity and temperature) and finally tested up to failure under three-point bending. Mechanical tests are carried out vis-à-vis DIC measurements using two distinct cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-concrete interface. This experimental setup makes it possible to interpret the mechanical behavior and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface obtained by DIC in the pre- and postcracking phase.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 967 ◽  
Author(s):  
Xinyan Guo ◽  
Shenyunhao Shu ◽  
Yilin Wang ◽  
Peiyan Huang ◽  
Jiaxiang Lin ◽  
...  

Subtropical natural exposure may significantly affect the bonding behavior of fiber reinforced polymer (FRP) externally bonded to concrete. To study the effect of subtropical natural climates on the FRP-concrete interface, natural exposure tests and an analytical approach were carried out on specimens externally bonded with carbon fiber reinforced polymer (CFRP) and basalt fiber reinforced polymer (BFRP). The bilinear bond stress-slip relationships for different exposure periods were derived from the experimental results of the strengthened reinforced concrete (RC) beams. Based on these bond-slip relationships, the full-range behavior of shear stress along the bond length and debonding load can be obtained through the analytical solution. The testing and numerical results showed that subtropical natural exposure can greatly affect the bond behavior of CFRP-concrete and BFRP-concrete interfaces in the early exposure period. In the late exposure period, the bond behavior was basically stable. With the increase of exposure time, the position of maximum shear stress tended to move backward, which indicated that the behavior of the FRP-concrete interface was weakened by natural exposure. Compared to the CFRP-concrete interface, subtropical natural exposure has greater influence on the bond behavior of the BFRP-concrete interface.


Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 565-579
Author(s):  
Comfort Mensah ◽  
Benzhi Min ◽  
Alex Osei Bonsu ◽  
Zhenqing Wang

Sign in / Sign up

Export Citation Format

Share Document