Airbag loading test and numerical simulation on out-of-plane mechanical behavior of a cast-in-situ composite wall with MTPC

2022 ◽  
pp. 103985
Author(s):  
Peng-Fei Liu ◽  
Chao Li ◽  
Hong-Nan Li ◽  
Gang Li ◽  
Hao Zhang
2020 ◽  
Vol 210 ◽  
pp. 110346
Author(s):  
Peng-Fei Liu ◽  
Hong-Nan Li ◽  
Gang Li ◽  
Farhad Ansari ◽  
Chao Li

1997 ◽  
Vol 28 (4) ◽  
pp. 1079-1087 ◽  
Author(s):  
Z. P. Xing ◽  
Y. F. Han ◽  
J. T. Guo ◽  
L. G. Yu

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 704
Author(s):  
Zahraa Kansoun ◽  
Hicham Chaouki ◽  
Donald Picard ◽  
Julien Lauzon-Gauthier ◽  
Houshang Alamdari ◽  
...  

Carbon-like materials such as the anode and the ramming paste play a crucial role in the efficiency of the Hall–Héroult process. The mechanical behavior of these materials during forming processes is complex and still ill-understood. This work aimed to investigate experimentally the mechanical behavior of a carbon paste used in the aluminum industry under different loading conditions. For this purpose, experiments consisting of (1) relaxation tests at different compaction levels, (2) quasi-static cyclic tests at several amplitudes, (3) monotonic compaction tests at varied strain rates, and (4) vibrocompaction tests at different frequencies were carried out. The obtained results highlight some fundamental aspects of the carbon paste behavior such as the strain rate’s effect on the paste compressibility, the hardening-softening behavior under cyclic loadings, the effect of cycling amplitude on the stress state and the paste densification, and the frequency effect on the vibrocompaction process. These results pave the way for the development of reliable rheological models for the modeling and the numerical simulation of carbon pastes forming processes.


2013 ◽  
Vol 22 ◽  
pp. 85-93
Author(s):  
Shuang Yi Liu ◽  
Min Min Tang ◽  
Ai Kah Soh ◽  
Liang Hong

In-situ characterization of the mechanical behavior of geckos spatula has been carried out in detail using multi-mode AFM system. Combining successful application of a novel AFM mode, i.e. Harmonix microscopy, the more detail elastic properties of spatula is brought to light. The results obtained show the variation of the mechanical properties on the hierarchical level of a seta, even for the different locations, pad and stalk of the spatula. A model, which has been validated using the existing experimental data and phenomena as well as theoretical predictions for geckos adhesion, crawling and self-cleaning of spatulae, is proposed in this paper. Through contrast of adhesive and craw ability of the gecko on the surfaces with different surface roughness, and measurement of the surface adhesive behaviors of Teflon, the most effective adhesion of the gecko is more dependent on the intrinsic properties of the surface which is adhered.


2007 ◽  
Vol 22 (2) ◽  
pp. 428-436 ◽  
Author(s):  
S. Jayalakshmi ◽  
J.P. Ahn ◽  
K.B. Kim ◽  
E. Fleury

We report the hydrogenation characteristics and mechanical properties of Ti50Zr25Cu25 in situ composite ribbons, composed of β-Ti crystalline phase dispersed in an amorphous matrix. Upon cathodic charging at room temperature, high hydrogen absorption up to ∼60 at.% (H/M = ∼1.2) is obtained. At such a high concentration, hydrogen-induced amorphization occurs. Mechanical tests conducted on the composite with varying hydrogen concentrations indicate that the Ti50Zr25Cu25 alloy is significantly resistant to hydrogen embrittlement when compared to conventional amorphous alloys. A possible mechanism that would contribute toward hydrogen-induced amorphization and hydrogen embrittlement is discussed.


Sign in / Sign up

Export Citation Format

Share Document