scholarly journals Domestic hot water consumption prediction models suited for dwellings in central-southern parts of Chile

2022 ◽  
pp. 104024
Author(s):  
A. Pérez-Fargallo ◽  
D. Bienvenido-Huertas ◽  
S. Contreras-Espinoza ◽  
L. Marín-Restrepo
2012 ◽  
Vol 97 ◽  
pp. 897-906 ◽  
Author(s):  
M.C. Rodríguez-Hidalgo ◽  
P.A. Rodríguez-Aumente ◽  
A. Lecuona ◽  
M. Legrand ◽  
R. Ventas

2019 ◽  
Author(s):  
MJ Booysen

Electric water heaters are responsible for a large portion of electricity consumption and water usage in the domestic sector. Smart water heaters alleviate the strain on the electricity supply grid and reduce water consumption through behavioural change, but the installation of in-line flow meters is inconvenient and expensive. A non-invasive water flow meter is proposed as an alternative. Non-invasive flow measurement is more common for high flow rates in the industrial sector than for domestic applications. Various non-invasive water measurement methods are investigated in the context of domestic hot water, and a combination of thermal- and vibration-sensing is proposed. The proposed solution uses inexpensive, easily installable, non-invasive sensors and a novel algorithm to provide the same flow measurement accuracy as existing in-line meters. The algorithm detects the beginning and end of water consumption events with an accuracy of 95.6%. Quantitative flow rate estimation was possible for flow rates greater than 5 L min⁻¹ with an accuracy of 89%, while volumetric usage estimation had an accuracy of more than 93%. The algorithm limitations were applied to field data, revealing that water consumption could be detected with an error of less than 12% within the limitations of the proposed algorithm. The paper presents a successful proof of concept for a non-invasive alternative to domestic hot water flow rate measurement.


2015 ◽  
Vol 70 ◽  
pp. 379-387 ◽  
Author(s):  
Aurore Lomet ◽  
Frédéric Suard ◽  
David Chèze

Author(s):  
Wessam El-Baz ◽  
Peter Tzscheutschler ◽  
Ulrich Wagner

There is a continuous growth of heat pump installations in residential buildings in Germany. The heat pumps were not only used for space heating and domestic hot water consumption but also to offer flexibility to the grid. the high coefficient of performance and the low cost of heat storages made the heat pumps an optimal candidate for the power to heat applications. Thus, several questions are raised about the optimal integration and control of the heat pump system with buffer storages to maximize its operation efficiency and minimize the operation costs. In this paper, an experimental investigation is performed to study the performance of a ground source heat pump (GSHP) with a combi-storage under several configurations and control factors. The experiments were performed on an innovative modular testbed that is capable of emulating a ground source to provide the heat pump with different temperature levels at different times of the day. Moreover, it can emulate the different building loads such as the space heating load and the domestic hot water consumption in real-time. The data gathered from the testbed and different experimental studies were used to develop a simulation model based on Modelica that can accurately simulate the dynamics of a GSHP in a building. The model was validated based on different metrics. Energetically, the difference between the developed model and the measured values was only 3.08\% and 4.18\% for the heat generation and electricity consumption, respectively.


Sign in / Sign up

Export Citation Format

Share Document