Drying shrinkage, mechanical and transport properties of sustainable mortar with both recycled aggregate and powder from concrete waste

2022 ◽  
pp. 104048
Author(s):  
Huixia Wu ◽  
Changqing Wang ◽  
Zhiming Ma
2012 ◽  
Vol 02 (02) ◽  
pp. 53-57 ◽  
Author(s):  
Paulo Roberto Lopes Lima ◽  
Monica Batista Leite

2019 ◽  
Vol 9 (9) ◽  
pp. 1935 ◽  
Author(s):  
Jung-Ho Kim ◽  
Jong-Hyun Sung ◽  
Chan-Soo Jeon ◽  
Sae-Hyun Lee ◽  
Han-Soo Kim

In recent years, the amount of construction waste and recycled aggregate has been increasing every year in Korea. However, as the recycled aggregate is poor quality, it is not used for concrete, and the Korean government has strengthened the quality standards for recycled aggregate for concrete. In this study, research was conducted on the mechanical and durability characteristics of concrete using recycled aggregate, after developing equipment to improve the quality of recycled aggregate to increase the use of recycled aggregate for environmental improvements. The results illustrated improvements in the air volume, slump, compressive strength, freezing and thawing resistance, and drying shrinkage. Furthermore, this study is expected to contribute to the increased use of recycled aggregate in the future.


2020 ◽  
Vol 105 ◽  
pp. 103426 ◽  
Author(s):  
Huan Zhang ◽  
Yuyin Wang ◽  
Dawn E. Lehman ◽  
Yue Geng ◽  
Katherine Kuder

2013 ◽  
Vol 567 ◽  
pp. 119-122
Author(s):  
Yue Qin Tang

This paper addresses problems of aggregate concrete of construction wastes, which were featured as large water absorption, quick slump loss, as well as easy bleeding and low strength of concrete. A comparative analysis by experiment between recycled aggregate concrete and ordinary concrete was made on aspects of water absorbability, compressive strength, slump loss, bleeding rate, drying shrinkage and economic efficiency. It has found possible to preparing the recycled aggregate concrete of high performance through the prewetting recycled aggregate. It is concluded that construction wastes can be recycled by obtaining the optimum mole of preparing recycled aggregate concrete of construction wastes and evaluating their reliability on cost-lefficiency and mechanic capability,thus, it also recycled the limited resources and solve some environment problems.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Mehmet Gesoglu ◽  
Erhan Güneyisi ◽  
Hatice Öznur Öz ◽  
Mehmet Taner Yasemin ◽  
Ihsan Taha

This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs) in which natural coarse aggregate (NCA) and/or natural fine aggregate (NFA) were replaced by recycled coarse aggregate (RCA) and/or recycled fine aggregate (RFA), respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b) ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA) concretes had significantly poorer performance than natural aggregate (NA) concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.


2011 ◽  
Vol 335-336 ◽  
pp. 1141-1144 ◽  
Author(s):  
Yun Xiang He

Pore structure is one of the main influencing factors of materials drying shrinkage. C30 natural mix proportion is used as reference, the impact of replacement rate of recycled aggregate, the mixing amount of fly ash, water reducer, expansion agent and water-cement ratio on recycled aggregate concrete’s porosity and pore characteristics was studied. Based on the pore structure theory, the influence of porosity and pore characteristics on recycled aggregate concrete’s drying shrinkage is analyzed.


2013 ◽  
Vol 7 (1) ◽  
pp. 232-236
Author(s):  
Yuanchen Guo ◽  
Xue Wang ◽  
Jueshi Qian

Material adsorption, the reverse process of evaporation diffusion, directly reflects the wettability of materials. Wettability is one of the main factors that affect the drying shrinkage of materials. A device that measures the wettability of recycled aggregate concrete (RAC) with fly ash is proposed in this study based on pore structure theory. The isothermal absorption curve of RAC is examined with different fly ash contents. Results show that as the recycled aggregate replacement rate increases, the moisture absorption capacity of RAC gradually increases. The addition of fly ash improves the porosity of RAC structures and reduces material wettability.


Sign in / Sign up

Export Citation Format

Share Document