water absorbability
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 15)

H-INDEX

3
(FIVE YEARS 1)

The focus on sustainability is at its peak in the construction industries in the last couple of decades. That includes green constructions such as rammed earth construction. Due to media exposure and carbon emission, people are undeniably turning to green and sustainable buildings. Furthermore, there is an improper management pattern of solid waste management found in developing countries, such as open burning and dumping of solid wastes. In which paper waste is not handled in a good way. There arefew places in developing countries where developing countries follow proper management of solid waste. Paper waste is present in each city because people are using it for daily life. Paper waste has fibre in them and has cellulose content. These components of paper waste are suitable for compressive strength. It has a side effect that it increases water absorbability. The reason for this research work is to reduce paper waste and reduce cement content. This paper also aims to find the durability and strength properties of rammed earth construction.


2021 ◽  
Vol 4 ◽  
Author(s):  
Kelly Cristina Tonello ◽  
Sergio Dias Campos ◽  
Aparecido Junior de Menezes ◽  
Julieta Bramorski ◽  
Samir Leite Mathias ◽  
...  

Few investigations have examined the structural controls of bark on its water storage and influence on stemflow, despite the bark being considered a critical component that determines the time and magnitude of this process. This study seeks to answer the question: Do bark water absorbability and wettability estimates correlate with stemflow yield? We hypothesized that (1) the absorbability and wettability are correlated, that is, greater water absorbability implies greater wettability, and (2) high rates of bark water absorbability and wettability has a strong and negative correlation with stemflow generation. Stemflow yield (Sy) was monitored over 12 months for 31 trees, representing 9 species common to the Brazilian savanna ecosystem known as Cerrado. Bark absorbability, per unit dry weight, changes over time of the water absorbability (BWA - by submersion methodology), bark drying (BWD), bark absorbability rate (BWArate), bark drying rate (BWDrate), and wettability (initial contact angle – CAin and CA rate - CArate) were determined under laboratory conditions. As insoluble lignin may also act to alter bark water storage dynamics, for each species, the bark insoluble lignin content was characterized. Stemflow variability was significant across the study species. Funneling ratios (FR) indicates that all species’ canopies diverted enough rainfall as stemflow to concentrate rainwaters at the surface around their stem bases (FR > 1). Differences in bark water absorbability were notable some of tree species. A decrease in the CA value as a function of time was not observed for all barks, which in association with stemflow yields, allowed a novel classification method of wettability, based on CAin and it’s rate of change: highly wettable (CAin ≤ 75.3° and CArate ≥ 0.26°h–1) and non-wettable (CAin ≥ 93.5° and CArate ≤ 0.13°h–1). So, only from the wettability classification could be observed that the non-wettable bark species presented higher Sy, FR, BWA, and BWArate than highly wettable bark species. The stemflow from species with highly wettable bark had a strong and positive correlation with BWA. On the other hand, non-wettable bark stemflow yield has a strongly and negative correlation with FR, CAin, and BWArate. Thus, bark wettability properties showed to deserves special attention. This novel classification of bark wettability had a substantial effect on stemflow yield comprehension and proved to be an important variable to link laboratory and field investigation for understanding the stemflow yield. These findings will improve our understanding of the stemflow dynamics, water balance and the ecohydrology processes of forest ecosystems.


2020 ◽  
Vol 112 ◽  
pp. 11-21
Author(s):  
Tomasz Gliszczyński ◽  
Andrzej Antczak

The study of selected properties of black poplar wood (Populus nigra L.) subjected to furfurylation and polymerization in lumen. The aim of this work was studying black poplar wood (Populus nigra L.) selected properties modified with furfuryl alcohol and styrene. Maleic anhydride and glicydyl methacrylate were used as cross-linking agents. For modified wood samples the index of WPG, density, hardness, water absorbability, colour change and volume swelling were tested. Each test results were compared with values for unmodified black poplar wood. During furfurylation process density of poplar wood samples increased up to 1.3 times. Addition of maleic anhydride to furfurylation process caused increase of WPG index about 5-6 % and at the same time slightly decrease of wood Brinell hardness. Water absorbability and volume swelling of furfurylated poplar wood after 10080 min (168 h) of soaking in water were reduced more than 50% relative to unmodified wood. Polymerization in lumen with using styrene caused increase of density up to 2 times, increase of Brinell hardness up to 1.5 times, while WPG index was in the range from 50.8 to 116.6%. For polymerization in lumen process, water absorbability and volume swelling after 10080 min (168 h) of soaking in water were reduced more than half as well. Furfurylation caused intensive wood darkening when polymerization in lumen changed wood colour slightly. Addition of maleic anhydride to furfuryl alcohol caused an even greater darkening of the wood. The studies proved, that chemical modification significantly improved selected properties of poplar wood.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4258
Author(s):  
Agata Stolarska ◽  
Jarosław Strzałkowski

This study examines the thermal parameters of mortars based on different cement type and water-cement W/C ratios. The presented relationships are important from the point of view of thermal insulation of the entire building component, of which the mortar is a part. The thermal properties of the mortar, and in particular its dependence on the degree of moisture, is important information from the point of view of hygrothermal simulations of building components. The moisture effect on the thermal properties was tested using nine mortar types. The study consisted of producing nine types of mortar on the basis of three cements (CEM I 42.5R, CEM II A-S 52.5N, CEM III A 42.5N). For each cement type, three variants of specimens were prepared which differed according to their water/cement ratio (0.50, 0.55 and 0.60). The main research of thermal parameters was carried out using a non-stationary method based on the analysis of changing heat flux readings. The thermal conductivity, volume-specific heat and thermal diffusivity values were analyzed. The tests performed allowed for determination of the density of specimens, water absorbability and thermal parameters in three water saturation states: dry, natural and wet. Additional microstructural tests were performed using mercury intrusion porosimetry. The obtained parameters were used to determine the relationship between the measured properties. An adverse effect of dampness on the thermal insulation of the studied materials was confirmed. In extreme cases, the increase in thermal conductivity due to material high moisture was 93%. The cement used affects the relationship between the total specific surface area and the W/C ratio. As expected, the total porosity of specimens was higher for mortars with higher W/C ratios. A strong correlation has been demonstrated between the total surface area and thermal conductivity. The opposite results were obtained when assessing the relationship between the total specific surface area and water absorbability. In case of specimens CEM II A-S 52.5N, the relation was the proportional, and in specimens CEM III A 42.5N, the relationship was inversely proportional to the W/C ratio.


2020 ◽  
Vol 110 ◽  
pp. 35-40
Author(s):  
Emil Żmuda ◽  
Andrzej Radomski

Swelling and water resistance of black poplar wood (Populus nigra L.) modified by polymerisation in lumen with styrene. Polymerisation in lumen of black poplar (Populus nigra L.) was performed to improve wood properties related to interaction with water. Wood samples were modified with styrene or a mixture of styrene and maleic anhydride, using benzoyl peroxide as initiator. Polymerisation was conducted in closed vessels at a temperature up to 120 °C. Volume swelling and water absorbability of modified wood samples were measured. A significant decrease in the rate of water absorption was found, especially at the initial stage of soaking, resulting in 50 % decrease in volume swelling and 85 % decrease in water absorption.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 575
Author(s):  
Anna Klamerus-Iwan ◽  
Jarosław Lasota ◽  
Ewa Błońska

The aim of the study was to determine the water storage capacity and absorbability of deadwood of different tree species with varying degrees of decomposition. Coniferous (Silver fir—Abies alba Mill.) and deciduous (Common hornbeam—Carpinus betulus L., Common ash—Fraxinus excelsior L., Common alder—Alnus glutinosa Gaertn., and Common aspen—Populus tremula L.) species were selected for the research. The study focuses on the wood of dead trees at an advanced stage of decomposition. Deadwood samples were collected at the Czarna Rózga Nature Reserve in central Poland. Changes over time of the water absorbability and water storage capacity of deadwood were determined under laboratory conditions. The research confirmed the significance of the wood species and the degree of wood decomposition in shaping the water storage capacity and absorbability of deadwood in forest ecosystems. Fir wood was characterized by having the highest water storage capacity and water absorbability. Among deciduous species under analysis, aspen wood was characterized by having the highest water storage capacity and absorbability. Our research has confirmed that deadwood may be a significant reservoir of water in forests.


2020 ◽  
Vol 26 (3) ◽  
pp. 317-322
Author(s):  
Semiha YENİDOĞAN

In the packaging sector of the printing industry, different coating applications are tried and investigated in order to increase the surface appearance and performance characteristics of paper and cardboard. The printability, water and ink absorption capacity, frictional resistance, light sensitivity of the visual graphical design that are going to be printed on the packaging papers are some of them. In this study, different types of cardboards that are used as a packaging material were chosen and coated with nanocrystalline cellulose (NCC)/PVA at different rates (%). In order to determine effective and economical usage conditions, the coating solutions, at three different concentrations as 3 wt.%, 5 wt. %, 7 wt.%, were prepared. The coating was applied on the test papers, which were at the same weights (350 g/m2) and had different surface properties as matte glossy, bright glossy, American Bristol. NCC/PVA existence on the coated paper surface was confirmed with Fourier Transform Infrared Spectroscopy (ATR-FTIR). The impact of the coating, which was prepared at different concentrations, on the packaging materials was studied with respect to thickness, stiffness, water absorbability, contact angle and surface tension.


2019 ◽  
Vol 108 ◽  
pp. 140-147
Author(s):  
ANDRZEJ RADOMSKI ◽  
MARTA GNACIŃSKA

The study of the impact of in situ polymerisation with styrene or acrylates on water absorbability and swelling of thermomechanically densified poplar wood. Black poplar samples, which were previously subjected to thermomechanical densification, were tested for an improvement on the field of water resistance. Series of samples were additionally thermally treated in a nitrogen atmosphere, and then series of densified only or densified and thermally treated samples were treated with monomer mixtures, containing styrene or acrylates, and co-monomers reactive toward cell wall of wood, followed by thermally induced radical polymerisation. All samples were tested by prolonged soaking in water, while volume swelling and absorbability were determined. Densified wood proved to be suitable for modification by in situ polymerisation. Thermally treated densified wood was found to be significantly more compatible with polymers used, as a decrease in its swelling was observed as dominant effect, while absorbability changes were less clear.


Author(s):  
Ademola Ayodeji Ajayi-Banji ◽  
D. A. Jenyo ◽  
Jubril Bello ◽  
M. A. Adegbile

Ceramic ware waste generation is becoming a global concern because of the increasing volume, hazardous nature, limited reusability, and poor waste management practices. This study examined the feasibility and efficacy of the inclusion of this waste as complementary aggregate in solid masonry unit production with bias interest on the compressive strength and water absorbability. Three particle sizes (1.4, 1.7, and 2.0 mm) of crushed ceramic ware waste were blended with natural fine aggregate under three different mix ratios (10, 20, and 30%) to produce the masonry units cured for 7, 14, 21, and 28 days prior to compressive tests analysis. Afterwards, some of the categories cured for 28-days were subjected to water absorption test. Morphology and elemental composition of the aggregates were also inspected using SEM-EDM machine. Also investigated were some of the aggregates’ physical properties. Results indicated that most of the waste-modified solid masonry units not only had water absorption capacity within required standard. The values were equally lower than the unmodified dense block (control) by 27 - 50%. Of the eighteen different categories produced, all M20T14, M20T21, and M30T28 modified dense masonry unit series with P1.7 (1.7 mm) and P2.0 (2.0 mm) particle sizes had high crushing force, compressive strength, and modulus range, which were 57 - 70 kN, 57 - 61 kN, 59 - 76 kN; 5.1 - 5.2 MPa, 5.1 - 5.5 MPa, 5.3 – 6.8 MPa; and 400 – 441 MPa, 411 – 419 MPa, 468 – 480 MPa respectively. Hence, modified masonry units with particle sizes P1.7 and P2.0 under the M20T14, M20T21, and M30T28 series are suitable masonry units for non-loading construction purposes. Interestingly, modified masonry unit (M30P2.0T7) cured under 7 days could also fit into this category. Hence, utilization of ceramic ware waste as co-aggregate in dense masonry units with M20 and M30 series production were established in this study for non-loading construction purposes


Sign in / Sign up

Export Citation Format

Share Document