scholarly journals Comparative analysis with collagen type II distinguishes cartilage oligomeric matrix protein as a primary TGFβ-responsive gene

2011 ◽  
Vol 19 (10) ◽  
pp. 1246-1253 ◽  
Author(s):  
H. Li ◽  
D.R. Haudenschild ◽  
K.L. Posey ◽  
J.T. Hecht ◽  
P.E. Di Cesare ◽  
...  
1992 ◽  
Vol 29 (6) ◽  
pp. 514-520 ◽  
Author(s):  
S. Ekman ◽  
D. Heinegård

The immunocytochemical localization of several matrix macromolecules, including collagen type II and proteoglycans, in the distal femoral articular-epiphyseal cartilage complex of 15 commercial pigs between the age of 6 and 18 weeks was studied. Early osteochondrotic lesions, i.e., chondronecrosis in the resting region of the growth cartilage, as well as extensions of necrotic cartilage into the subchondral bone, were present in all animals, except those 6 weeks old. A battery of antibodies were used for identification of macromolecules in the matrix at different stages of the disease. Chondrocyte involvement in the process could be studied by identifying the sequence of alterations in matrix macromolecules as the lesion developed. The immunostaining for aggrecan (large aggregating proteoglycans), cartilage oligomeric matrix protein, fibronectin, collagen type II, fibromodulin, and biglycan was more prominent in the areas of chondronecrosis, extending into the subchondral bone, than in the normal resting region. This altered pattern of matrix macromolecules resembled that of the matrix of the proliferative chondrocytes and suggests that the chondrocyte maturation had stopped in the proliferative zone. The matrix in the areas of chondronecrosis in the resting region resembled that in the normal resting region. Thus the chondronecrosis appears to have preceded alterations of the matrix composition. The antibody reactivity pattern was, however, altered in the matrix of the clustered chondrocytes in areas of chondronecrosis. Staining in these regions suggested a more prominent appearance of fibronectin and collagen type II than in the normal matrix of the resting region. These changes are suggestive of attempt to repair. The chondronecrotic areas restricted to the resting region have a matrix that is different from the matrix of the abnormal cartilage extending into the subchondral bone, which resembled the matrix of the proliferative region. Hence the osteochondrotic lesion may not start in the resting region, instead the maturation of chondrocytes seems to stop in the proliferative zone, which would result in impaired bone formation.


1997 ◽  
Vol 138 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Lisbet Camper ◽  
Dick Heinegård ◽  
Evy Lundgren-Åkerlund

Chondroadherin (the 36-kD protein) is a leucine-rich, cartilage matrix protein known to mediate adhesion of isolated chondrocytes. In the present study we investigated cell surface proteins involved in the interaction of cells with chondroadherin in cell adhesion and by affinity purification. Adhesion of bovine articular chondrocytes to chondroadherin-coated dishes was dependent on Mg2+ or Mn2+ but not Ca2+. Adhesion was partially inhibited by an antibody recognizing β1 integrin subunit. Chondroadherin-binding proteins from chondrocyte lysates were affinity purified on chondroadherin-Sepharose. The β1 integrin antibody immunoprecipitated two proteins with molecular mass ∼110 and 140 kD (nonreduced) from the EDTA-eluted material. These results indicate that a β1 integrin on chondrocytes interacts with chondroadherin. To identify the α integrin subunit(s) involved in interaction of cells with the protein, we affinity purified chondroadherin-binding membrane proteins from human fibroblasts. Immunoprecipitation of the EDTA-eluted material from the affinity column identified α2β1 as a chondroadherin-binding integrin. These results are in agreement with cell adhesion experiments where antibodies against the integrin subunit α2 partially inhibited adhesion of human fibroblast and human chondrocytes to chondroadherin. Since α2β1 also is a receptor for collagen type II, we tested the ability of different antibodies against the α2 subunit to inhibit adhesion of T47D cells to collagen type II and chondroadherin. The results suggested that adhesion to collagen type II and chondroadherin involves similar or nearby sites on the α2β1 integrin. Although α2β1 is a receptor for both collagen type II and chondroadherin, only adhesion of cells to collagen type II was found to mediate spreading.


2012 ◽  
Vol 14 (6) ◽  
pp. R237 ◽  
Author(s):  
Tsvetelina Batsalova ◽  
Ingrid Lindh ◽  
Johan Bäcklund ◽  
Balik Dzhambazov ◽  
Rikard Holmdahl

1992 ◽  
Vol 22 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Tan Yan ◽  
Harald Burkhardt ◽  
Thomas Ritter ◽  
Barbara Bröker ◽  
Karl Heinz Mann ◽  
...  

1995 ◽  
Vol 40 (3) ◽  
pp. 181-185 ◽  
Author(s):  
H. Devlin ◽  
J. Hoyland ◽  
A.J. Freemont ◽  
P. Sloan

2020 ◽  
Vol 6 (4) ◽  
pp. 747-750
Author(s):  
Dr. Sathik Babu ◽  
Dr. Pradeep Elangovan ◽  
Dr. Dinesh Kumar S

Sign in / Sign up

Export Citation Format

Share Document