Precision medicine-based machine learning analyses to explore optimal exercise therapies for individuals with knee osteoarthritis

2021 ◽  
Vol 29 ◽  
pp. S397-S398
Author(s):  
S. Kim ◽  
M.R. Kosorok ◽  
L. Arbeeva ◽  
T. Schwartz ◽  
Y.M. Golightly ◽  
...  
2021 ◽  
Author(s):  
Stefano Olgiati ◽  
Nima Heidari ◽  
Davide Meloni ◽  
Federico Pirovano ◽  
Ali Noorani ◽  
...  

Background Quantum computing (QC) and quantum machine learning (QML) are promising experimental technologies which can improve precision medicine applications by reducing the computational complexity of algorithms driven by big, unstructured, real-world data. The clinical problem of knee osteoarthritis is that, although some novel therapies are safe and effective, the response is variable, and defining the characteristics of an individual who will respond remains a challenge. In this paper we tested a quantum neural network (QNN) application to support precision data-driven clinical decisions to select personalized treatments for advanced knee osteoarthritis. Methods Following patients consent and Research Ethics Committee approval, we collected clinico-demographic data before and after the treatment from 170 patients eligible for knee arthroplasty (Kellgren-Lawrence grade ≥ 3, OKS ≤ 27, Age ≥ 64 and idiopathic aetiology of arthritis) treated over a 2 year period with a single injection of microfragmented fat. Gender classes were balanced (76 M, 94 F) to mitigate gender bias. A patient with an improvement ≥ 7 OKS has been considered a Responder. We trained our QNN Classifier on a randomly selected training subset of 113 patients to classify responders from non-responders (73 R, 40 NR) in pain and function at 1 year. Outliers were hidden from the training dataset but not from the validation set. Results We tested our QNN Classifier on a randomly selected test subset of 57 patients (34 R, 23 NR) including outliers. The No Information Rate was equal to 0.59. Our application correctly classified 28 Responders out of 34 and 6 non-Responders out of 23 (Sensitivity = 0.82, Specificity = 0.26, F1 Statistic= 0.71). The Positive (LR+) and Negative (LR-) Likelihood Ratios were respectively 1.11 and 0.68. The Diagnostic Odds Ratio (DOR) was equal to 2. Conclusions Preliminary results on a small validation dataset show that quantum machine learning applied to data-driven clinical decisions for the personalized treatment of advanced knee osteoarthritis is a promising technology to reduce computational complexity and improve prognostic performance. Our results need further research validation with larger, real-world unstructured datasets, and clinical validation with an AI Clinical Trial to test model efficacy, safety, clinical significance and relevance at a public health level.


Nature ◽  
2021 ◽  
Author(s):  
Stefanie Warnat-Herresthal ◽  
◽  
Hartmut Schultze ◽  
Krishnaprasad Lingadahalli Shastry ◽  
Sathyanarayanan Manamohan ◽  
...  

AbstractFast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


2021 ◽  
pp. 105447
Author(s):  
Gustavo Leporace ◽  
Felipe Gonzalez ◽  
Leonardo Metsavaht ◽  
Marcelo Motta ◽  
Felipe P. Carpes ◽  
...  

2022 ◽  
Vol 2 ◽  
Author(s):  
Rasheed Omobolaji Alabi ◽  
Alhadi Almangush ◽  
Mohammed Elmusrati ◽  
Antti A. Mäkitie

Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide and its incidence is on the rise in many populations. The high incidence rate, late diagnosis, and improper treatment planning still form a significant concern. Diagnosis at an early-stage is important for better prognosis, treatment, and survival. Despite the recent improvement in the understanding of the molecular mechanisms, late diagnosis and approach toward precision medicine for OSCC patients remain a challenge. To enhance precision medicine, deep machine learning technique has been touted to enhance early detection, and consequently to reduce cancer-specific mortality and morbidity. This technique has been reported to have made a significant progress in data extraction and analysis of vital information in medical imaging in recent years. Therefore, it has the potential to assist in the early-stage detection of oral squamous cell carcinoma. Furthermore, automated image analysis can assist pathologists and clinicians to make an informed decision regarding cancer patients. This article discusses the technical knowledge and algorithms of deep learning for OSCC. It examines the application of deep learning technology in cancer detection, image classification, segmentation and synthesis, and treatment planning. Finally, we discuss how this technique can assist in precision medicine and the future perspective of deep learning technology in oral squamous cell carcinoma.


Sign in / Sign up

Export Citation Format

Share Document