Stem Cell Proliferation Pathways Comparison between Human Exfoliated Deciduous Teeth and Dental Pulp Stem Cells by Gene Expression Profile from Promising Dental Pulp

2009 ◽  
Vol 35 (11) ◽  
pp. 1536-1542 ◽  
Author(s):  
Sayaka Nakamura ◽  
Yoichi Yamada ◽  
Wataru Katagiri ◽  
Takayuki Sugito ◽  
Kenji Ito ◽  
...  
2010 ◽  
Vol 53 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Jakub Suchánek ◽  
Benjamín Víšek ◽  
Tomáš Soukup ◽  
Sally Kamal El-Din Mohamed ◽  
Romana Ivančaková ◽  
...  

Aims: Our aims were to isolate stem cells from human exfoliated deciduous teeth (SHED), to cultivate them in vitro and to investigate their basic biological properties, phenotype and to compare our findings with dental pulp stem cells (DPSC) isolated from permanent teeth. Methods: Dental pulp was gently evacuated from exfoliated teeth. After enzymatic dissociation of dental pulp, SHED were cultivated in modified cultivation media for mesenchymal adult progenitor cells containing 2 % FCS and supplemented with growth factors and insulin, transferrin, sodium (ITS) supplement. Cell viability and other biological properties were examined using a Vi-Cell analyzer and a Z2-Counter. DNA analyses and phenotyping were performed with flow cytometry. Results: We were able to cultivate SHED over 45 population doublings. Our results showed that SHED cultivated under same conditions as DPSC had longer average population doubling time (41.3 hrs for SHED vs. 24.5 hrs for DPSC). Phenotypic comparison of cultivated SHED to that of cultivated DPSC showed differential expression CD29, CD44, CD71, CD117, CD166. During long-term cultivation, SHED did not showed any signs of degeneration or spontaneous differentiation. Conclusions: We isolated stem cells from exfoliated teeth. In comparison to DPSC, SHED proliferation rate was about 50% slower, and SHED showed slightly different phenotype. These cells may be extremely useful for stem cell tissue banking, further stem cell research and future therapeutic applications.


2018 ◽  
Vol 5 (10) ◽  
pp. 180864 ◽  
Author(s):  
Nunthawan Nowwarote ◽  
Waleerat Sukarawan ◽  
Kiattipan Kanjana ◽  
Prasit Pavasant ◽  
Benjamin P. J. Fournier ◽  
...  

Interleukin 6 (IL-6) plays various roles including stem cell regulation. The present study investigated the effect of IL-6 on cell proliferation, colony forming unit ability, stem cell marker expression and differentiation ability in stem cells isolated from human exfoliated deciduous teeth (SHEDs). We reported that the isolated cells from dental pulp tissues for deciduous teeth expressed CD44, CD90 and CD105 but not CD45. These cells were able to differentiate into osteoblasts, adipocytes and neuronal-like cells. IL-6 treatment resulted in the significant increase of NANOG, SOX2 and REX1 mRNA expression. However, IL-6 had no effect on cell proliferation and colony forming unit ability. IL-6 did not alter adipogenic and neurogenic differentiation potency. IL-6 supplementation in osteogenic medium led to a significant increase of mineralization. Furthermore, IL-6 upregulated ALP, ANKH and PIT1 mRNA levels. In conclusion, IL-6 participates in the regulation of pluripotent marker expression and is also involved in mineralization process of SHEDs. Hence, IL-6 could be employed as a supplementary substance in culture medium to maintain stemness and to induce osteogenic induction in SHEDs for future regenerative cell therapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2345-2345 ◽  
Author(s):  
Ryuji Iwaki ◽  
Ryusuke Nakatsuka ◽  
Yoshikazu Matsuoka ◽  
Masaya Takahashi ◽  
Tatsuya Fujioka ◽  
...  

Abstract Abstract 2345 Background: Ratajczak and his colleagues identified a unique population of very small embryonic-like (VSEL) stem cells in adult mouse bone marrow (BM) (Leukemia 2006:20;857). These VSELs are; 1) very small (∼4 μm); 2) express pluripotent stem cell markers, such as Oct4, Nanog, SSEA-1, and Rex-1; 3); responsive to a SDF-1 gradient; 4) possess large nuclei that contain euchromatin. It is very interesting to note that VSELs possess the potential to differentiate into 3 germ layers in vitro and in vivo, thereby contributing to tissue/organ regeneration. These VSELs were isolated as lineage-negative (Lin−), Sca-1-positive (Sca-1+), CD45-negative (CD45−) cells by FACS. However, the incidence of VSELs in BM-derived mononuclear cells is ∼0.01%. Therefore, it is difficult to isolate VSELs very effectively. This study describes our recently developed highly efficient method for isolating VSELs using enzymatic treatment of murine bone. Materials and Methods: Murine BM nucleated cells (BMNC) were isolated from BM flushed from the pairs of femurs and tibiae of 8 week-old C57BL/6 mice. Erythrocytes were removed using a hypotonic solution. Then the remaining bone tissues were thoroughly washed using PBS- with 2% FCS. These bone tissue specimens were crushed in a mortar and then incubated in cell dissociation buffer containing a-medium with 5% FCS supplemented with 1.5 mg/ml type I collagenase and 2 mg/ml dispase at 37°C for 1 hour. Next, the BMNCs and bone-derived nucleated cells (BDNCs) were stained with various monoclonal antibodies, including anti-lineages, anti-CD45, anti-Sca-1, anti-CXCR4, anti-CD133, and anti-PDGFRα, and then were used for subsequent FACS analyses. Results: The R1 gate was set on the FSC channel using 4 and 10 μm synthetic beads, based on the predicted very small size of VSELs. The VSELs were isolated from BMNCs and BDNCs by multicolor FACS, as a population of Lin−Sca-1+CD45− cells (Fig. 1A). The incidences of VSELs in the BMNCs and BDNCs were 0.001% and 0.1%, respectively. Therefore, the enzymatic treatment of bone tissues yielded about 100 times the efficiency for the isolation of VSELs (Fig. 1B). The bone-derived (BD) VSELs were small (< 5 μm) and possessed a relatively large nucleus surrounded by a narrow rim of cytoplasm. They expressed CD133, but not PDGFRα. However, they weakly expressed CXCR4. The gene expression profiles were analyzed using real time quantitative PCR (RQ-PCR) to evaluate the expression of ES cell markers (Oct4, Nanog, Rex1, Dppa3), HSC (KSL) markers (c-kit, Tal1, GATA2), and MSC markers (Nestin, Ang1, CXCL12, VE-Cadherin). Unexpectedly, BD VSELs expressed high levels of Nestin and Cadherin. However, they expressed weak levels of Oct4 and Nanog. The gene expression profile of the BD VSELs was clearly distinct from the well-defined populations of ES cells, KSL cells, and MSCs. Interestingly, the number of these BD VSELs significantly increased after the induction of liver injury by carbon tetrachloride administration. They were then most likely mobilized into the peripheral blood (PB). G-CSF did mobilize KSL cells into PB, as previously reported. However, G-CSF did not mobilize the BD VSELs. The effects of sRANKL on the mobilization of BD VSELs were examined in vivo. Interestingly, the number of BD VSELs significantly increased 2–3 days after the administration of sRANKL. However, the number of VSELs in PB did not increase. These results suggest that BD VSELs actively proliferated after liver injury and bone resorption. Conclusion: The present data suggest that the majority of the Lin−Sca-1+CD45− cells reside in the bone tissue. BD VSELs resemble BM-derived VSELs. However, a RQ-PCR analysis revealed that the gene expression profile of BD VSELs was different from those of the previously reported BM-derived VSELs. Further studies will therefore be required to elucidate their stem cell characteristics and the potential relationship between BD VSELs and BM-derived VSELs. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Minu Anoop ◽  
Indrani Datta

: Most conventional treatments for neurodegenerative diseases fail due to their focus on neuroprotection rather than neurorestoration. Stem cell‐based therapies are becoming a potential treatment option for neurodegenerative diseases as they can home in, engraft, differentiate and produce factors for CNS recovery. Stem cells derived from human dental pulp tissue differ from other sources of mesenchymal stem cells due to their embryonic neural crest origin and neurotrophic property. These include both dental pulp stem cells [DPSCs] from dental pulp tissues of human permanent teeth and stem cells from human exfoliated deciduous teeth [SHED]. SHED offer many advantages over other types of MSCs such as good proliferative potential, minimal invasive procurement, neuronal differentiation and neurotrophic capacity, and negligible ethical concerns. The therapeutic potential of SHED is attributed to the paracrine action of extracellularly released secreted factors, specifically the secretome, of which exosomes is a key component. SHED and its conditioned media can be effective in neurodegeneration through multiple mechanisms, including cell replacement, paracrine effects, angiogenesis, synaptogenesis, immunomodulation, and apoptosis inhibition, and SHED exosomes offer an ideal refined bed-to-bench formulation in neurodegenerative disorders. However, in spite of these advantages, there are still some limitations of SHED exosome therapy, such as the effectiveness of long-term storage of SHED and their exosomes, the development of a robust GMP-grade manufacturing protocol, optimization of the route of administration, and evaluation of the efficacy and safety in humans. In this review, we have addressed the isolation, collection and properties of SHED along with its therapeutic potential on in vitro and in vivo neuronal disorder models as evident from the published literature.


2018 ◽  
Vol 28 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Larissa Vilela Pereira ◽  
Ricardo Ferreira Bento ◽  
Dayane B. Cruz ◽  
Cláudia Marchi ◽  
Raquel Salomone ◽  
...  

Post-traumatic lesions with transection of the facial nerve present limited functional outcome even after repair by gold-standard microsurgical techniques. Stem cell engraftment combined with surgical repair has been reported as a beneficial alternative. However, the best association between the source of stem cell and the nature of conduit, as well as the long-term postoperative cell viability are still matters of debate. We aimed to assess the functional and morphological effects of stem cells from human exfoliated deciduous teeth (SHED) in polyglycolic acid tube (PGAt) combined with autografting of rat facial nerve on repair after neurotmesis. The mandibular branch of rat facial nerve submitted to neurotmesis was repaired by autograft and PGAt filled with purified basement membrane matrix with or without SHED. Outcome variables were compound muscle action potential (CMAP) and axon morphometric. Animals from the SHED group had mean CMAP amplitudes and mean axonal diameters significantly higher than the control group ( p < 0.001). Mean axonal densities were significantly higher in the control group ( p = 0.004). The engrafted nerve segment resected 6 weeks after surgery presented cells of human origin that were positive for the Schwann cell marker (S100), indicating viability of transplanted SHED and a Schwann cell-like phenotype. We conclude that regeneration of the mandibular branch of the rat facial nerve was improved by SHED within PGAt. The stem cells integrated and remained viable in the neural tissue for 6 weeks since transplantation, and positive labeling for S100 Schwann-cell marker suggests cells initiated in vivo differentiation.


2020 ◽  
Vol 31 (14) ◽  
pp. 1538-1549
Author(s):  
Fan Zhang ◽  
Mehdi Pirooznia ◽  
Hong Xu

Deficiencies in electron transport chain complexes increase the activity of FOXO transcription factor in Drosophila midgut stem cells, which impairs stem cell proliferation and enterocyte specification.


Sign in / Sign up

Export Citation Format

Share Document