Pulpal Responses to Direct Capping with Betamethasone/Gentamicin Cream and Mineral Trioxide Aggregate: Histologic and Micro–Computed Tomography Assessments

2016 ◽  
Vol 42 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Emad AlShwaimi ◽  
Abdul Majeed ◽  
Aiman A. Ali
2012 ◽  
Vol 38 (5) ◽  
pp. 670-672 ◽  
Author(s):  
Ahmad M. EL-Ma'aita ◽  
Alison J.E. Qualtrough ◽  
David C. Watts

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sang-Yeop Chung ◽  
Yun Hyeong Kim ◽  
Yong Kwon Chae ◽  
Su-Sung Jo ◽  
Sung Chul Choi ◽  
...  

Abstract Background Internal voids of materials can serve a hub for microorganism and affect the sealing ability. This study aimed to evaluate the sealing performance of calcium silicate-based cements in immature teeth treated with regenerative endodontics. Methods Twenty single root canals from immature permanent premolars were prepared using regenerative endodontic protocols. The root canals were randomly divided into two groups and sealed with mineral trioxide aggregate (MTA) and Biodentine (BD). The teeth were kept in humid environment for 7 days and scanned using micro-computed tomography. The voids within the cements were segmented and visualized using image processing, incorporating the modified Otsu algorithm. The porosity of each sample was also calculated as the ratio between the number of voxels of voids and the volume of the cements. Tortuosity was also calculated using the A-star algorithm. Results Voids larger than 70 μm were predominantly observed in the top and interfacial surface of cements. The others were evenly distributed. MTA and BD showed the same level of porosity and tortuosity at interfacial surfaces. In inner surfaces, MTA showed more less porosity and tortuosity compared to BD (p < 0.05). Conclusions There were no differences in sealing performance between MTA and BD.


2021 ◽  
Vol 10 (8) ◽  
pp. 1719
Author(s):  
Hae Jin An ◽  
Hyunjung Yoon ◽  
Hoi In Jung ◽  
Dong-Hoon Shin ◽  
Minju Song

This study aimed to quantify and compare the obturation quality after mineral trioxide aggregate (MTA) orthograde fillings with three different obturation techniques. Thirty-three extracted human maxillary molars were collected. Distobuccal and palatal canals were prepared to an apical size of #40/06 with a Profile Ni-Ti system. All 66 canals were divided into two groups according to the material (EZ-seal or OrthoMTA) and then obturated using three different techniques: manual compaction using S-kondenser (group H), compactor activation (group C), or reverse rotary motion of Ni-Ti file (group R). The obturated roots were scanned using micro-computed tomography (micro-CT). The percentage of voids located in the apical 5 mm was measured separately, that is, closed, open, and total porosity. There was no relation between the filling material and obturation technique (p > 0.05). The percentage volume of open and total porosity was higher in EZ-seal than in OrthoMTA (open: p = 0.002, total: p = 0.001). Group H showed higher open and total porosity than groups C and R. Micro-CT analysis showed that the void volume after orthograde MTA fillings significantly decreased when the additional activation was accompanied by hand condensation. Obturation with a Ni-Ti file using reverse motion could be recommended as an MTA orthograde filling technique.


2013 ◽  
Author(s):  
Agnes Ostertag ◽  
Francoise Peyrin ◽  
Sylvie Fernandez ◽  
Jean-Denis Laredo ◽  
Vernejoul Marie-Christine De ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


2018 ◽  
Author(s):  
Zoë E. Wilbur ◽  
◽  
Arya Udry ◽  
Arya Udry ◽  
Daniel M. Coleff ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


Sign in / Sign up

Export Citation Format

Share Document