Microbial Modulation of Stem Cells and Future Directions in Regenerative Endodontics

2017 ◽  
Vol 43 (9) ◽  
pp. S95-S101 ◽  
Author(s):  
Anibal Diogenes ◽  
Kenneth M. Hargreaves
2020 ◽  
Vol 15 (3) ◽  
pp. 250-262
Author(s):  
Maryam Islami ◽  
Fatemeh Soleimanifar

Transplantation of hematopoietic stem cells (HSCs) derived from umbilical cord blood (UCB) has been taken into account as a therapeutic approach in patients with hematologic malignancies. Unfortunately, there are limitations concerning HSC transplantation (HSCT), including (a) low contents of UCB-HSCs in a single unit of UCB and (b) defects in UCB-HSC homing to their niche. Therefore, delays are observed in hematopoietic and immunologic recovery and homing. Among numerous strategies proposed, ex vivo expansion of UCB-HSCs to enhance UCB-HSC dose without any differentiation into mature cells is known as an efficient procedure that is able to alter clinical treatments through adjusting transplantation-related results and making them available. Accordingly, culture type, cytokine combinations, O2 level, co-culture with mesenchymal stromal cells (MSCs), as well as gene manipulation of UCB-HSCs can have effects on their expansion and growth. Besides, defects in homing can be resolved by exposing UCB-HSCs to compounds aimed at improving homing. Fucosylation of HSCs before expansion, CXCR4-SDF-1 axis partnership and homing gene involvement are among strategies that all depend on efficiency, reasonable costs, and confirmation of clinical trials. In general, the present study reviewed factors improving the expansion and homing of UCB-HSCs aimed at advancing hematopoietic recovery and expansion in clinical applications and future directions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuoqun Fang ◽  
Penghong Chen ◽  
Shijie Tang ◽  
Aizhen Chen ◽  
Chaoyu Zhang ◽  
...  

AbstractRadiation-induced skin injury (RISI) is one of the common serious side effects of radiotherapy (RT) for patients with malignant tumors. Mesenchymal stem cells (MSCs) are applied to RISI repair in some clinical cases series except some traditional options. Though direct replacement of damaged cells may be achieved through differentiation capacity of MSCs, more recent data indicate that various cytokines and chemokines secreted by MSCs are involved in synergetic therapy of RISI by anti-inflammatory, immunomodulation, antioxidant, revascularization, and anti-apoptotic activity. In this paper, we not only discussed different sources of MSCs on the treatment of RISI both in preclinical studies and clinical trials, but also summarized the applications and mechanisms of MSCs in other related regenerative fields.


2006 ◽  
Vol 10 (4) ◽  
pp. 866-883 ◽  
Author(s):  
A. Santana ◽  
R. Enseñat - Waser ◽  
María Isabel Arribas ◽  
J. A. Reig ◽  
E. Roche

2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Jiaxin Zhang ◽  
Yuzhe Liu ◽  
Yutong Chen ◽  
Lei Yuan ◽  
He Liu ◽  
...  

Adipose-derived stem cells (ADSCs) can maintain self-renewal and enhanced multidifferentiation potential through the release of a variety of paracrine factors and extracellular vesicles, allowing them to repair damaged organs and tissues. Consequently, considerable attention has increasingly been paid to their application in tissue engineering and organ regeneration. Here, we provide a comprehensive overview of the current status of ADSC preparation, including harvesting, isolation, and identification. The advances in preclinical and clinical evidence-based ADSC therapy for bone, cartilage, myocardium, liver, and nervous system regeneration as well as skin wound healing are also summarized. Notably, the perspectives, potential challenges, and future directions for ADSC-related researches are discussed. We hope that this review can provide comprehensive and standardized guidelines for the safe and effective application of ADSCs to achieve predictable and desired therapeutic effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Antonio Romito ◽  
Gilda Cobellis

Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells.


2006 ◽  
Vol 10 (4) ◽  
pp. 852-868
Author(s):  
A. Santana ◽  
R. Enseñat - Waser ◽  
Maria Isabel Arribas ◽  
J. A. Reig ◽  
E. Roche

Sign in / Sign up

Export Citation Format

Share Document