Crustal deformation in Volcanic covered area as inferred from magnetotelluric studies: an example from India

2021 ◽  
pp. 101840
Author(s):  
K.S. Ajithabh ◽  
Prasanta K. Patro
TAPPI Journal ◽  
2016 ◽  
Vol 15 (4) ◽  
pp. 253-262 ◽  
Author(s):  
ERIK BOHLIN ◽  
CAISA JOHANNSON ◽  
MAGNUS LESTELIUS

The effect of coating structure variations on flexographic print quality was studied using pilot-coated paperboard samples with different latex content and latex particle sizes. Two latexes, with particle sizes of 120 nm and 160 nm, were added at either 12 parts per hundred (pph) or 18 pph to the coating formulation. The samples were printed with full tone areas at print forces of 25 N and 50 N in a laboratory flexographic printing press using a waterbased ink. A high ratio of uncovered areas (UCAs) could be detected for the samples that contained 18 pph latex printed at a print force of 25 N. UCAs decreased with increased print force and with decreased amounts of latex in the coating formulation. The fraction of latex covered area on the coating surface was estimated to be 0.35–0.40 for the 12 pph, and 0.70–0.75 for the 18 pph samples. The ink penetration depth into the coating layer could be linked to the fraction of latex-free areas on the coating surface. Optical cross section microscopy indicated that a higher printing force did not increase the depth of penetrated ink to any greater extent. Higher printing force did increase contact between plate and substrate, leading to an improved distribution of the ink. This, in turn, increased print density and decreased UCAs. On closer inspection, the UCAs could be categorized as being induced by steep topographic changes. When appearing at other locations, they were more likely to be caused by poor wetting of the surface. To understand the wetting behavior of the coating surface, observed contact angles were compared with calculated contact angles on surfaces of mixed composition.


2003 ◽  
Vol 34 (4) ◽  
pp. 281-294 ◽  
Author(s):  
R.V. Engeset ◽  
H-C. Udnæs ◽  
T. Guneriussen ◽  
H. Koren ◽  
E. Malnes ◽  
...  

Snowmelt can be a significant contributor to major floods, and hence updated snow information is very important to flood forecasting services. This study assesses whether operational runoff simulations could be improved by applying satellite-derived snow covered area (SCA) from both optical and radar sensors. Currently the HBV model is used for runoff forecasting in Norway, and satellite-observed SCA is used qualitatively but not directly in the model. Three catchments in southern Norway are studied using data from 1995 to 2002. The results show that satellite-observed SCA can be used to detect when the models do not simulate the snow reservoir correctly. Detecting errors early in the snowmelt season will help the forecasting services to update and correct the models before possible damaging floods. The method requires model calibration against SCA as well as runoff. Time-series from the satellite sensors NOAA AVHRR and ERS SAR are used. Of these, AVHRR shows good correlation with the simulated SCA, and SAR less so. Comparison of simultaneous data from AVHRR, SAR and Landsat ETM+ for May 2000 shows good inter-correlation. Of a total satellite-observed area of 1,088 km2, AVHRR observed a SCA of 823 km2 and SAR 720 km2, as compared to 889 km2 using ETM+.


2018 ◽  
Author(s):  
Brennan W. Young ◽  
◽  
Michael P. Bishop ◽  
Da Huo
Keyword(s):  

Author(s):  
Ilias Lazos ◽  
Sotirios Sboras ◽  
Christos Pikridas ◽  
Spyros Pavlides ◽  
Alexandros Chatzipetros

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia-Katerina Kufner ◽  
Najibullah Kakar ◽  
Maximiliano Bezada ◽  
Wasja Bloch ◽  
Sabrina Metzger ◽  
...  

AbstractBreak-off of part of the down-going plate during continental collision occurs due to tensile stresses built-up between the deep and shallow slab, for which buoyancy is increased because of continental-crust subduction. Break-off governs the subsequent orogenic evolution but real-time observations are rare as it happens over geologically short times. Here we present a finite-frequency tomography, based on jointly inverted local and remote earthquakes, for the Hindu Kush in Afghanistan, where slab break-off is ongoing. We interpret our results as crustal subduction on top of a northwards-subducting Indian lithospheric slab, whose penetration depth increases along-strike while thinning and steepening. This implies that break-off is propagating laterally and that the highest lithospheric stretching rates occur during the final pinching-off. In the Hindu Kush crust, earthquakes and geodetic data show a transition from focused to distributed deformation, which we relate to a variable degree of crust-mantle coupling presumably associated with break-off at depth.


Sign in / Sign up

Export Citation Format

Share Document