Pre-surgical planning using patient-specific 3D printed anatomical models for women with uterine fibroids

2021 ◽  
Vol 43 (5) ◽  
pp. 670
Author(s):  
Carly Cooke ◽  
Teresa Flaxman ◽  
Adnan Sheikh ◽  
Olivier Miguel ◽  
Matthew McInnes ◽  
...  
2020 ◽  
Vol 27 (7) ◽  
pp. S71-S72
Author(s):  
T. Flaxman ◽  
C.M. Cooke ◽  
A. Sheikh ◽  
O. Miguel ◽  
L. Chepelev ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Natanael Parningotan Agung ◽  
Muhammad Hanif Nadhif ◽  
Gampo Alam Irdam ◽  
Chaidir Arif Mochtar

Urology is one of the fields that are always at the frontline of bringing scientific advancements into clinical practice, including 3D printing (3DP). This study aims to discuss and presents the current role of 3D-printed phantoms and devices for organ-specified applications in urology. The discussion started with a literature search regarding the two mentionedtopics within PubMed, Embase, Scopus, and EBSCOhost databases. 3D-printed urological organ phantoms are reported for providing residents new insight regarding anatomical characteristics of organs, either normal or diseased, in a tangible manner. Furthermore, 3D-printed organ phantoms also helped urologists to prepare a pre-surgical planning strategy with detailed anatomical models of the diseased organs. In some centers, 3DP technology also contributed to developing specified devicesfor disease management. To date, urologists have been benefitted by 3D-printed phantoms and devices in the education and disease management of organs of in the genitourinary system, including kidney, bladder, prostate, ureter, urethra, penis, and adrenal. It is safe to say that 3DP technology can bring remarkable changes to daily urological practices.


2020 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Elisa Mussi ◽  
Federico Mussa ◽  
Chiara Santarelli ◽  
Mirko Scagnet ◽  
Francesca Uccheddu ◽  
...  

In brain tumor surgery, an appropriate and careful surgical planning process is crucial for surgeons and can determine the success or failure of the surgery. A deep comprehension of spatial relationships between tumor borders and surrounding healthy tissues enables accurate surgical planning that leads to the identification of the optimal and patient-specific surgical strategy. A physical replica of the region of interest is a valuable aid for preoperative planning and simulation, allowing the physician to directly handle the patient’s anatomy and easily study the volumes involved in the surgery. In the literature, different anatomical models, produced with 3D technologies, are reported and several methodologies were proposed. Many of them share the idea that the employment of 3D printing technologies to produce anatomical models can be introduced into standard clinical practice since 3D printing is now considered to be a mature technology. Therefore, the main aim of the paper is to take into account the literature best practices and to describe the current workflow and methodology used to standardize the pre-operative virtual and physical simulation in neurosurgery. The main aim is also to introduce these practices and standards to neurosurgeons and clinical engineers interested in learning and implementing cost-effective in-house preoperative surgical planning processes. To assess the validity of the proposed scheme, four clinical cases of preoperative planning of brain cancer surgery are reported and discussed. Our preliminary results showed that the proposed methodology can be applied effectively in the neurosurgical clinical practice both in terms of affordability and in terms of simulation realism and efficacy.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Kay S. Hung ◽  
Michael J. Paulsen ◽  
Hanjay Wang ◽  
Camille Hironaka ◽  
Y. Joseph Woo

In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.


2021 ◽  
Author(s):  
◽  
Ana Morris

<p>Novel technologies that produce medical models which are synthetic equivalents to human tissue may forever change the way human anatomy and medicine are explored. Medical modelling using a bitmap-based additive manufacturing workflow offers exciting opportunities for medical education, informed consent practices, skills acquisition, pre-operative planning and surgical simulation. Moving medical data from the 2D-world to tactile, highly detailed 3D-printed anatomical models may significantly change how we comprehend the body; revamping everything – from medical education to clinical practice.  Research Problem The existing workflow for producing patient-specific anatomical models from biomedical imaging data involves image thresholding and iso-surface extraction techniques that result in surface meshes (also known as objects or parts). This process restricts shape specification to one colour and density, limiting material blending and resulting in anatomically inequivalent medical models. So, how can the use of 3D-printing go beyond static anatomical replication? Imagine pulling back the layers of tissue to reveal the complexity of a procedure, allowing a family to understand and discuss their diagnosis. Overcoming the disadvantages of static medical models could be a breakthrough in the areas of medical communication and simulation. Currently, patient specific models are either rigid or mesh-based and, therefore, are not equivalents of physiology.  Research Aim The aim of this research is to create tangible and visually compelling patient-specific prototypes of human anatomy, offering an insight into the capabilities of new bitmap-based 3D-printing technology. It proposes that full colour, multi-property, voxel-based 3D-printing can emulate physiology, creating a new format of visual and physical medical communication.  Data Collection and Procedure For this study, biomedical imaging data was converted into multi-property 3D-printed synthetic anatomy by bypassing the conversion steps of traditional segmentation. Bitmap-based 3D-printing allows for the precise control over every 14-micron material droplet or “voxel”.  Control over each voxel involves a process of sending bitmap images to a high-resolution and multi-property 3D-printer. Bitmap-based 3D-printed synthetic medical models – which mimicked the colour and density of human anatomy – were successfully produced.  Findings This research presented a novel and streamlined bitmap-based medical modelling workflow with the potential to save manufacturing time and labour cost. Moreover, this workflow produced highly accurate models with graduated densities, translucency, colour and flexion – overcoming complexities that arise due to our body’s opaqueness. The presented workflow may serve as an incentive for others to investigate bitmap-based 3D-printing workflows for different manufacturing applications.</p>


2021 ◽  
Vol 10 (16) ◽  
pp. 3509
Author(s):  
Guido R. Sigron ◽  
Marina Barba ◽  
Frédérique Chammartin ◽  
Bilal Msallem ◽  
Britt-Isabelle Berg ◽  
...  

The present study aimed to analyze if a preformed “hybrid” patient-specific orbital mesh provides a more accurate reconstruction of the orbital floor and a better functional outcome than a standardized, intraoperatively adapted titanium implant. Thirty patients who had undergone surgical reconstruction for isolated, unilateral orbital floor fractures between May 2016 and November 2018 were included in this study. Of these patients, 13 were treated conventionally by intraoperative adjustment of a standardized titanium mesh based on assessing the fracture’s shape and extent. For the other 17 patients, an individual three-dimensional (3D) anatomical model of the orbit was fabricated with an in-house 3D-printer. This model was used as a template to create a so-called “hybrid” patient-specific titanium implant by preforming the titanium mesh before surgery. The functional and cosmetic outcome in terms of diplopia, enophthalmos, ocular motility, and sensory disturbance trended better when “hybrid” patient-specific titanium meshes were used but with statistically non-significant differences. The 3D-printed anatomical models mirroring the unaffected orbit did not delay the surgery’s timepoint. Nonetheless, it significantly reduced the surgery duration compared to the traditional method (58.9 (SD: 20.1) min versus 94.8 (SD: 33.0) min, p-value = 0.003). This study shows that using 3D-printed anatomical models as a supporting tool allows precise and less time-consuming orbital reconstructions with clinical benefits.


2019 ◽  
Vol 48 ◽  
pp. 139-140
Author(s):  
D. Jelovac ◽  
M. Petrovic ◽  
M. Romic ◽  
M. Micic ◽  
D. Nikolic ◽  
...  

OTO Open ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 2473974X1880449 ◽  
Author(s):  
Samuel R. Barber ◽  
Kevin Wong ◽  
Vivek Kanumuri ◽  
Ruwan Kiringoda ◽  
Judith Kempfle ◽  
...  

Otolaryngologists increasingly use patient-specific 3-dimensional (3D)–printed anatomic physical models for preoperative planning. However, few reports describe concomitant use with virtual models. Herein, we aim to (1) use a 3D-printed patient-specific physical model with lateral skull base navigation for preoperative planning, (2) review anatomy virtually via augmented reality (AR), and (3) compare physical and virtual models to intraoperative findings in a challenging case of a symptomatic petrous apex cyst. Computed tomography (CT) imaging was manually segmented to generate 3D models. AR facilitated virtual surgical planning. Navigation was then coupled to 3D-printed anatomy to simulate surgery using an endoscopic approach. Intraoperative findings were comparable to simulation. Virtual and physical models adequately addressed details of endoscopic surgery, including avoidance of critical structures. Complex lateral skull base cases may be optimized by surgical planning via 3D-printed simulation with navigation. Future studies will address whether simulation can improve patient outcomes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Teresa E. Flaxman ◽  
Carly M. Cooke ◽  
Olivier X. Miguel ◽  
Adnan M. Sheikh ◽  
Sukhbir S. Singh

Abstract Background Patient specific three-dimensional (3D) models can be derived from two-dimensional medical images, such as magnetic resonance (MR) images. 3D models have been shown to improve anatomical comprehension by providing more accurate assessments of anatomical volumes and better perspectives of structural orientations relative to adjacent structures. The clinical benefit of using patient specific 3D printed models have been highlighted in the fields of orthopaedics, cardiothoracics, and neurosurgery for the purpose of pre-surgical planning. However, reports on the clinical use of 3D printed models in the field of gynecology are limited. Main text This article aims to provide a brief overview of the principles of 3D printing and the steps required to derive patient-specific, anatomically accurate 3D printed models of gynecologic anatomy from MR images. Examples of 3D printed models for uterine fibroids and endometriosis are presented as well as a discussion on the barriers to clinical uptake and the future directions for 3D printing in the field of gynecological surgery. Conclusion Successful gynecologic surgery requires a thorough understanding of the patient’s anatomy and burden of disease. Future use of patient specific 3D printed models is encouraged so the clinical benefit can be better understood and evidence to support their use in standard of care can be provided.


Sign in / Sign up

Export Citation Format

Share Document