Disorder of gut amino acids metabolism during CKD progression is related with gut microbiota dysbiosis and metagenome change

2018 ◽  
Vol 149 ◽  
pp. 425-435 ◽  
Author(s):  
Yang Liu ◽  
Jianping Li ◽  
Jingao Yu ◽  
Yingyi Wang ◽  
Jingbo Lu ◽  
...  
2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S42-S42
Author(s):  
Kohei Sugihara ◽  
Nobuhiko Kamada

Abstract Background Recent accumulating evidence suggests that amino acids have crucial roles in the maintenance of intestinal homeostasis. In inflammatory bowel disease (IBD), amino acid metabolism is changed in both host and the gut microbiota. Among amino acids, L-serine plays a central role in several metabolic processes that are essential for the growth and survival of both mammalian and bacterial cells. However, the role of L-serine in intestinal homeostasis and IBD remains incompletely understood. In this study, we investigated the effect of dietary L-serine on intestinal inflammation in a murine model of colitis. Methods Specific pathogen-free (SPF) mice were fed either a control diet (amino acid-based diet) or an L-serine-deficient diet (SDD). Colitis was induced by the treatment of dextran sodium sulfate (DSS). The gut microbiome was analyzed by 16S rRNA sequencing. We also evaluate the effect of dietary L-serine in germ-free mice and gnotobiotic mice that were colonized by a consortium of non-mucolytic bacterial strains or the consortium plus mucolytic bacterial strains. Results We found that the SDD exacerbated experimental colitis in SPF mice. However, the severity of colitis in SDD-fed mice was comparable to control diet-fed mice in germ-free condition, suggesting that the gut microbiota is required for exacerbation of colitis caused by the restriction of dietary L-serine. The gut microbiome analysis revealed that dietary L-serine restriction fosters the blooms of a mucus-degrading bacterium Akkermansia muciniphila and adherent-invasive Escherichia coli in the inflamed gut. Consistent with the expansion of mucolytic bacteria, SDD-fed mice showed a loss of the intestinal mucus layer. Dysfunction of the mucus barrier resulted in increased intestinal permeability, thereby leading to bacterial translocation to the intestinal mucosa, which subsequently increased the severity of colitis. The increased intestinal permeability and subsequent bacterial translocation were observed in SDD-fed gnotobiotic mice that colonized by mucolytic bacteria. In contrast, dietary L-serine restriction did not alter intestinal barrier integrity in gnotobiotic mice that colonized only by non-mucolytic bacteria. Conclusion Our results suggest that dietary L-serine regulates the integrity of the intestinal mucus barrier during inflammation by limiting the expansion of mucus degrading bacteria.


Author(s):  
Mélanie Fouesnard ◽  
Johanna Zoppi ◽  
Mélanie Petera ◽  
Léa Le Gleau ◽  
Carole Migné ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiuli Lin ◽  
Yingying Liu ◽  
Lili Ma ◽  
Xiaomeng Ma ◽  
Liping Shen ◽  
...  

Abstract Background Constipation is a common gastrointestinal dysfunction which has a potential impact on people's immune state and their quality of life. Here we investigated the effects of constipation on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Methods Constipation was induced by loperamide in female C57BL/6 mice. The alternations of gut microbiota, permeability of intestinal barrier and blood–brain barrier, and histopathology of colon were assessed after constipation induction. EAE was induced in the constipation mice. Fecal microbiota transplantation (FMT) was performed from constipation mice into microbiota-depleted mice. Clinical scores, histopathology of inflammation and demyelination, Treg/Th17 and Treg17/Teff17 imbalance both in the peripheral lymphatic organs and central nervous system, cytokines include TGF-β, GM-CSF, IL-10, IL-17A, IL-17F, IL-21, IL-22, and IL-23 in serum were assessed in different groups. Results Compared with the vehicle group, the constipation mice showed gut microbiota dysbiosis, colon inflammation and injury, and increased permeability of intestinal barrier and blood–brain barrier. We found that the clinical and pathological scores of the constipation EAE mice were severer than that of the EAE mice. Compared with the EAE mice, the constipation EAE mice showed reduced percentage of Treg and Treg17 cells, increased percentage of Th17 and Teff17 cells, and decreased ratio of Treg/Th17 and Treg17/Teff17 in the spleen, inguinal lymph nodes, brain, and spinal cord. Moreover, the serum levels of TGF-β, IL-10, and IL-21 were decreased while the GM-CSF, IL-17A, IL-17F, IL-22, and IL-23 were increased in the constipation EAE mice. In addition, these pathological processes could be transferred via their gut microbiota. Conclusions Our results verified that constipation induced gut microbiota dysbiosis exacerbated EAE via aggravating Treg/Th17 and Treg17/Teff17 imbalance and cytokines disturbance in C57BL/6 mice.


2021 ◽  
Author(s):  
Yang Liu ◽  
Wei Xiao ◽  
Leilei Yu ◽  
Fengwei Tian ◽  
Gang Wang ◽  
...  

Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate...


Sign in / Sign up

Export Citation Format

Share Document