Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage

2021 ◽  
Vol 483 ◽  
pp. 229140
Author(s):  
Chunyong He ◽  
Tao Bo ◽  
Yubin Ke ◽  
Bao-tian Wang ◽  
Juzhou Tao ◽  
...  
2018 ◽  
Vol 6 (44) ◽  
pp. 22037-22042 ◽  
Author(s):  
Ze Yang ◽  
Jingying Sun ◽  
Yunlong Xie ◽  
Pawanjit Kaur ◽  
Joseph Hernandez ◽  
...  

The abundance and low cost of sodium potentially enable application of sodium ion batteries for grid-scale energy storage.


2016 ◽  
Vol 8 (36) ◽  
pp. 23676-23687 ◽  
Author(s):  
Juhan Lee ◽  
Soumyadip Choudhury ◽  
Daniel Weingarth ◽  
Daekyu Kim ◽  
Volker Presser

2016 ◽  
Vol 8 (14) ◽  
pp. 9104-9115 ◽  
Author(s):  
Benjamin Krüner ◽  
Juhan Lee ◽  
Nicolas Jäckel ◽  
Aura Tolosa ◽  
Volker Presser

2016 ◽  
Vol 9 (11) ◽  
pp. 3392-3398 ◽  
Author(s):  
Juhan Lee ◽  
Benjamin Krüner ◽  
Aura Tolosa ◽  
Sethuraman Sathyamoorthi ◽  
Daekyu Kim ◽  
...  

We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon.


2016 ◽  
Vol 309 ◽  
pp. 50-55 ◽  
Author(s):  
Patricia Díaz ◽  
Zoraida González ◽  
Ricardo Santamaría ◽  
Marcos Granda ◽  
Rosa Menéndez ◽  
...  

2017 ◽  
Vol 5 (24) ◽  
pp. 12520-12527 ◽  
Author(s):  
Juhan Lee ◽  
Pattarachai Srimuk ◽  
Simon Fleischmann ◽  
Alexander Ridder ◽  
Marco Zeiger ◽  
...  

We introduce a hybrid energy storage system combining zinc iodide (ZnI2) as redox electrolyte with a nanoporous activated carbon fiber (ACF) cathode and a zinc disk anode.


2018 ◽  
Vol 30 (15) ◽  
pp. 1705789 ◽  
Author(s):  
Kolleboyina Jayaramulu ◽  
Deepak P. Dubal ◽  
Bhawna Nagar ◽  
Vaclav Ranc ◽  
Ondrej Tomanec ◽  
...  

2019 ◽  
Vol 21 ◽  
pp. 427-438 ◽  
Author(s):  
Magdalena Skunik-Nuckowska ◽  
Katarzyna Węgrzyn ◽  
Sławomir Dyjak ◽  
Natalia H. Wisińska ◽  
Pawel J. Kulesza

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2111
Author(s):  
Mahdi Moghaddam ◽  
Silver Sepp ◽  
Cedrik Wiberg ◽  
Antonio Bertei ◽  
Alexis Rucci ◽  
...  

Solid boosters are an emerging concept for improving the performance and especially the energy storage density of the redox flow batteries, but thermodynamical and practical considerations of these systems are missing, scarce or scattered in the literature. In this paper we will formulate how these systems work from the point of view of thermodynamics. We describe possible pathways for charge transfer, estimate the overpotentials required for these reactions in realistic conditions, and illustrate the range of energy storage densities achievable considering different redox electrolyte concentrations, solid volume fractions and solid charge storage densities. Approximately 80% of charge storage capacity of the solid can be accessed if redox electrolyte and redox solid have matching redox potentials. 100 times higher active areas are required from the solid boosters in the tank to reach overpotentials of <10 mV.


Sign in / Sign up

Export Citation Format

Share Document