Combined high catalytic activity and polysulfide confinement in hierarchical carbon-encapsulated CoSe hollow core-shell spheres for high-performance lithium–sulfur batteries

2021 ◽  
Vol 506 ◽  
pp. 230177
Author(s):  
Lun Li ◽  
Guobao Xu ◽  
Xiong Liu ◽  
Shouji Huang ◽  
Xiaolin Wei ◽  
...  
2016 ◽  
Vol 6 (13) ◽  
pp. 5102-5115 ◽  
Author(s):  
Biplab Banerjee ◽  
Ramana Singuru ◽  
Sudipta K. Kundu ◽  
Karnekanti Dhanalaxmi ◽  
Linyi Bai ◽  
...  

Core–shell catalytic nanoreactor was designed, exhibiting high catalytic activity for levulinic acid hydrogenation.


2020 ◽  
Vol 20 (11) ◽  
pp. 7087-7091
Author(s):  
Bhumi Reddy Srinivasulu Reddy ◽  
Mookala Premasudha ◽  
Yeon-Ju Lee ◽  
Hyo-Jun Ahn ◽  
Nagireddy Gari Subba Reddy ◽  
...  

To develop the next-generation energy storage systems, lithium-sulfur batteries represent an attractive option due to its high theoretical capacity, and energy density. In this work, MoS2/rGO (reduced graphene oxide) was prepared by hydrothermal synthesis and sulfur added by the melt diffusion method. The as-prepared MoS2/rGO has strong polysulfides entrapping, high conductivity, large surface area, and high catalytic activity, consequently resulting in enhanced rate performance and cycling capability of Li-S batteries. The coin cells were constructed with the MoS2/rGO/S cathode material, exhibit a high reversible capacity of nearly 1380 mAh/g at 0.1 C, outstanding cycling stability with a low capacity fading rate. Present work reveals that the hierarchal MoS2/rGO/S cathodes are potential candidate materials for future high-performance lithium-sulfur batteries.


2019 ◽  
Vol 7 (13) ◽  
pp. 7644-7653 ◽  
Author(s):  
Jingyi Wu ◽  
Na You ◽  
Xiongwei Li ◽  
Hongxia Zeng ◽  
Shuai Li ◽  
...  

The synergistic effect of the SiO2@MoS2 core–shell nanocomposite simultaneously facilitates Li+ diffusion and provides triple confinement of polysulfides.


ACS Nano ◽  
2020 ◽  
Vol 14 (12) ◽  
pp. 17285-17294
Author(s):  
Boyu Li ◽  
Qingmei Su ◽  
Lintao Yu ◽  
Jun Zhang ◽  
Gaohui Du ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 273
Author(s):  
Wei Xu ◽  
Qikai Wu ◽  
Zhongmei Che ◽  
Bin Fan ◽  
Dengke Zhao ◽  
...  

Redox kinetics of lithium polysulfides (LiPSs) conversion and poor electrical conductivity of sulfur during the charge-discharge process greatly inhibit the commercialization of high-performance lithium–sulfur (Li–S) batteries. Herein, we synthesized CoSe2 porous hollow flowers (CoSe2-PHF) by etching and further selenizing layered double hydroxide, which combined the high catalytic activity of transition metal compound and high electrical conductivity of selenium. The obtained CoSe2-PHF can efficiently accelerate the catalytic conversion of LiPSs, expedite the electron transport, and improve utilization of active sulfur during the charge-discharge process. As a result, with CoSe2-PHF/S-based cathodes, the Li–S batteries exhibited a reversible specific capacity of 955.8 mAh g−1 at 0.1 C and 766.0 mAh g−1 at 0.5 C, along with a relatively small capacity decay rate of 0.070% per cycle within 400 cycles at 1 C. Even at the high rate of 3 C, the specific capacity of 542.9 mAh g−1can be maintained. This work enriches the way to prepare porous composites with high catalytic activity and electrical conductivity as sulfur hosts for high-rate, long-cycle rechargeable Li–S batteries.


2017 ◽  
Vol 5 (13) ◽  
pp. 6245-6256 ◽  
Author(s):  
Daying Guo ◽  
Xi'an Chen ◽  
Huifang Wei ◽  
Menglan Liu ◽  
Feng Ding ◽  
...  

Highly uniform flower-like carbon nanospheres/sulfur cathode for Li–S battery delivers excellent performance.


2020 ◽  
Vol 4 (2) ◽  
pp. 42 ◽  
Author(s):  
Hamza Dunya ◽  
Maziar Ashuri ◽  
Dana Alramahi ◽  
Zheng Yue ◽  
Kamil Kucuk ◽  
...  

The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.


Sign in / Sign up

Export Citation Format

Share Document