scholarly journals Altered protein profile of plasma extracellular vesicles in oral squamous cell carcinoma development

2021 ◽  
pp. 104422
Author(s):  
Kaiyuan Xu ◽  
Liu Liu ◽  
Kaihui Wu ◽  
Miaomiao Zhang ◽  
Ruiqi Xie ◽  
...  
Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1166 ◽  
Author(s):  
Xin-Hui Khoo ◽  
Ian C. Paterson ◽  
Bey-Hing Goh ◽  
Wai-Leng Lee

Drug resistance remains a severe problem in most chemotherapy regimes. Recently, it has been suggested that cancer cell-derived extracellular vesicles (EVs) could mediate drug resistance. In this study, the role of EVs in mediating the response of oral squamous cell carcinoma (OSCC) cells to cisplatin was investigated. We isolated and characterized EVs from OSCC cell lines showing differential sensitivities to cisplatin. Increased EV production was observed in both de novo (H314) and adaptive (H103/cisD2) resistant lines compared to sensitive H103 cells. The protein profiles of these EVs were then analyzed. Differences in the proteome of EVs secreted by H103 and H103/cisD2 indicated that adaptation to cisplatin treatment caused significant changes in the secreted nanovesicles. Intriguingly, both resistant H103/cisD2 and H314 cells shared a highly similar EV protein profile including downregulation of the metal ion transporter, ATP1B3, in the EVs implicating altered drug delivery. ICP-MS analysis revealed that less cisplatin accumulated in the resistant cells, but higher levels were detected in their EVs. Therefore, we inhibited EV secretion from the cells using a proton pump inhibitor and observed an increased drug sensitivity in cisplatin-resistant H314 cells. This finding suggests that control of EV secretion could be a potential strategy to enhance the efficacy of cancer treatment.


2019 ◽  
Vol 16 (4) ◽  
pp. 363-373
Author(s):  
Binbin Yu ◽  
Wei Cao ◽  
Chenping Zhang ◽  
Ronghui Xia ◽  
Jinlin Liu ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 1578525 ◽  
Author(s):  
Mauricio Rocha Dourado ◽  
Johanna Korvala ◽  
Pirjo Åström ◽  
Carine Ervolino De Oliveira ◽  
Nilva K. Cervigne ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Meng Yang ◽  
Qingqiong Luo ◽  
Xu Chen ◽  
Fuxiang Chen

Abstract Background Plant-derived extracellular vesicles (PDEVs) have been exploited for cancer treatment with several benefits. Bitter melon is cultivated as a vegetable and folk medicine with anticancer and anti-inflammatory activities. 5-Fluorouracil (5-FU) is widely used for cancer treatment. However, 5-FU-mediated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammation activation induced the resistance of oral squamous cell carcinoma (OSCC) cells to 5-FU. In this study, we explored the potential of bitter melon-derived extracellular vesicles (BMEVs) for enhancing the therapeutic efficacy and reduce the resistance of OSCC to 5-FU. Results Herein, we demonstrate that bitter melon derived extracellular vesicles (BMEVs), in addition to their antitumor activity against OSCC have intrinsic anti-inflammatory functions. BMEVs induced S phase cell cycle arrest and apoptosis. Apoptosis induction was dependent on reactive oxygen species (ROS) production and JUN protein upregulation, since pretreatment with N-acetyl cysteine or catechin hydrate could prevent apoptosis and JUN accumulation, respectively. Surprisingly, BMEVs significantly downregulated NLRP3 expression, although ROS plays a central role in NLRP3 activation. We further assessed the underlying molecular mechanism and proposed that the RNAs of BMEVs, at least in part, mediate anti-inflammatory bioactivity. In our previous studies, NLRP3 activation contributed to the resistance of OSCC cells to 5-FU. Our data clearly indicate that BMEVs could exert a remarkable synergistic therapeutic effect of 5-FU against OSCC both in vitro and in vivo. Most notably, NLRP3 downregulation reduced the resistance of OSCC to 5-FU. Conclusions Together, our findings demonstrate a novel approach to enhance the therapeutic efficacy and reduce the drug resistance of cancer cells to chemotherapeutic agents, which provides proof-of-concept evidence for the future development of PDEVs-enhanced therapy. Graphic Abstract


2020 ◽  
Vol 21 (4) ◽  
pp. 1197 ◽  
Author(s):  
Tami Yap ◽  
Neha Pruthi ◽  
Christine Seers ◽  
Simone Belobrov ◽  
Michael McCullough ◽  
...  

Extracellular vesicles (EVs) are secreted from most cell types and utilized in a complex network of near and distant cell-to-cell communication. Insight into this complex nanoscopic interaction in the development, progression and treatment of oral squamous cell carcinoma (OSCC) and precancerous oral mucosal disorders, termed oral potentially malignant disorders (OPMDs), remains of interest. In this review, we comprehensively present the current state of knowledge of EVs in OSCC and OPMDs. A systematic literature search strategy was developed and updated to December 17, 2019. Fifty-five articles were identified addressing EVs in OSCC and OPMDs with all but two articles published from 2015, highlighting the novelty of this research area. Themes included the impact of OSCC-derived EVs on phenotypic changes, lymph-angiogenesis, stromal immune response, mechanisms of therapeutic resistance as well as utility of EVs for drug delivery in OSCC and OPMD. Interest and progress of knowledge of EVs in OSCC and OPMD has been expanding on several fronts. The oral cavity presents a unique and accessible microenvironment for nanoparticle study that could present important models for other solid tumours.


2021 ◽  
Vol 22 (20) ◽  
pp. 11160
Author(s):  
Simona Fontana ◽  
Rodolfo Mauceri ◽  
Maria Eugenia Novara ◽  
Riccardo Alessandro ◽  
Giuseppina Campisi

The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and bioinformatic strategies to determine the potential use of saliva small extracellular vesicles (S/SEVs) as a potential tumor biomarker source. Among the twenty-three enrolled patients, 5 were free from diseases (OSCC_FREE), 6 were with OSCC without lymph node metastasis (OSCC_NLNM), and 12 were with OSCC and lymph node metastasis (OSCC_LNM). The S/SEVs from patients of each group were pooled and properly characterized before performing their quantitative proteome comparison based on the SWATH_MS (Sequential Window Acquisition of all Theoretical Mass Spectra) method. The analysis resulted in quantitative information for 365 proteins differentially characterizing the S/SEVs of analyzed clinical conditions. Bioinformatic analysis of the proteomic data highlighted that each S/SEV group was associated with a specific cluster of enriched functional network terms. Our results highlighted that protein cargo of salivary small extracellular vesicles defines a functional signature, thus having potential value as novel predict biomarkers for OSCC.


Sign in / Sign up

Export Citation Format

Share Document