Preparation and characterization of sodium silicate/epoxy resin composite bonded Nd-Fe-B magnets with high performance

2019 ◽  
Vol 37 (10) ◽  
pp. 1083-1087 ◽  
Author(s):  
Weiqiang Liu ◽  
Wang Xi ◽  
Ruijin Hu ◽  
Ming Yue ◽  
Yuxia Yin ◽  
...  
2019 ◽  
Vol 16 ◽  
pp. 934-938
Author(s):  
S. Sivasaravanan ◽  
V.K. Bupesh Raja ◽  
K. Avinash Babu ◽  
B. Chandra Mouli

2021 ◽  
Vol 18 (3) ◽  
pp. 123-136
Author(s):  
Tzu-Hsuan Cheng ◽  
Kenji Nishiguchi ◽  
Yoshi Fukawa ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya ◽  
...  

Abstract Wide-Band Gap (WBG) power devices have become a promising option for high-power applications due to the superior material properties over traditional Silicon. To not limit WBG devices’ mother nature, a rugged and high-performance power device packaging solution is necessary. This study proposes a Double-Side Cooled (DSC) 1.2 kV half-bridge power module having dual epoxy resin insulated metal substrate (eIMS) for solving convectional power module challenges and providing a cost-effective solution. The thermal performance outperforms traditional Alumina (Al2O3) Direct Bonded Copper (DBC) DSC power module due to moderate thermal conductivity (10 W/mK) and thin (120 mm) epoxy resin composite dielectric working as the IMS insulation layer. This novel organic dielectric can withstand high voltage (5 kVAC @ 120 μm) and has a Glass Transition Temperature (Tg) of 300°C, which is suitable for high-power applications. In the thermal-mechanical modeling, the organic DSC power module can pass the thermal cycling test over 1,000 cycles by optimizing the mechanical properties of the encapsulant material. In conclusion, this article not only proposes a competitive organic-based power module but also a methodology of evaluation for thermal and mechanical performance.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000277-000281
Author(s):  
Tzu-Hsuan Cheng ◽  
Kenji Nishiguchi ◽  
Yoshi Fukawa ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya ◽  
...  

Abstract Silicon-Carbide (SiC) power devices have become a promising option for traditional Silicon (Si) due to the superior material properties. To fully take advantage of the SiC devices, a high-performance power device packaging solution is necessary. This study proposes a cost-effective double-sided cooled (DSC) 1.2 kV SiC half-bridge power module using organic epoxy-resin composite dielectric (ERCD) substrates. The high mechanical and thermal performance of the power module is achieved by the low-modulus, moderate thermal conductivity, and relatively thin (120 μm) layer of ERCD material compared with traditional metal-clad ceramic approaches. This novel organic dielectric can withstand high voltage (5 kV @ 120 μm) and operate up to 250°C continuously, which is indispensable for high power applications. The thermal modeling results show that the equivalent thermal resistance junction-to-case (Rjc_eq) of the DSC power module using dual direct bonded copper (DBC) is 17% higher than the dual ERCD configuration. Furthermore, a non-insulated DSC power module concept is proposed for maximizing thermal performance by considering thermal vias in the ERCD substrate and direct-soldered heat sink. A thought process for optimization of thermal via design is demonstrated and it shows up to 24% of improvement on thermal performance compared with the insulated DSC power module.


Sign in / Sign up

Export Citation Format

Share Document