scholarly journals Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist

2018 ◽  
Vol 10 (3) ◽  
pp. 594-602 ◽  
Author(s):  
Bharti Chawre
1952 ◽  
Vol 30 (2) ◽  
pp. 125-129
Author(s):  
J. P. Adamson ◽  
J. Doupe

Intra-arterial pressures and pulse wave velocities were measured in 18 subjects whose auscultatory diastolic pressures ranged from 45 to 120 mm. Hg. Various methods were used to lower the blood pressure in the hypertensive and to raise it in nonhypertensive subjects so that pulse wave velocities might be compared in all subjects at a common diastolic pressure. The pulse wave velocities were calculated for a diastolic pressure of 80 mm. Hg. No significant differences were found between hypertensive and nonhypertensive subjects. It was concluded that a defect of arterial elasticity as gauged by pulse wave velocity is not a factor in the pathogenesis of hypertension.


Author(s):  
Suresh Dande ◽  
◽  
Robert R. Stewart ◽  
Nikolay Dyaur ◽  
◽  
...  

Laboratory physical models play an important role in understanding rock properties and wave propagation, both theoretically and at the field scale. In some cases, 3D-printing technology can be adopted to construct complex rock models faster, more inexpensively, and with more specific features than previous model-building techniques. In this study, we use 3D-printed rock models to assist in understanding the effects of various fluids (air, water, engine oil, crude oil, and glycerol) on the models’ elastic properties. We first used a 3D-printed, 1-in. cube-shaped layered model. This model was created with a 6% primary porosity and a bulk density of 0.98 g/cc with VTI anisotropy. We next employed a similar cube but with horizontal inclusions embedded in the layered background, which contributed to its total 24% porosity (including primary porosity). For air to liquid saturation, P-velocities increased for all liquids in both models, with the highest increase being with glycerol (57%) and an approximately 45% increase for other fluids in the inclusion model. For the inclusion model (dry and saturated), we observed a greater difference between two orthogonally polarized S-wave velocities (Vs1 and Vs2) than between two P-wave velocities (VP0 and VP90). We attribute this to the S2-wave (polarized normal to both the layering and the plane of horizontal inclusions), which appears more sensitive to horizontal inclusions than the P-wave. For the inclusion model, Thomsen’s P-wave anisotropic parameter (ɛ) decreased from 26% for the air case to 4% for the water-saturated cube and to 1% for glycerol saturation. The small difference between the bulk modulus of the frame and the pore fluid significantly reduces the velocity anisotropy of the medium, making it almost isotropic. We compared our experimental results with theory and found that predictions using Schoenberg’s linear slip theory combined with Gassmann’s anisotropic equation were closer to actual measurements than Hudson’s isotropic calculations. This work provides insights into the usefulness of 3D-printed models to understand elastic rock properties and wave propagation under various fluid saturations.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Young Hak Lee ◽  
Taekeun Oh

The traditional P-wave ultrasonic measurement has been used for the condition assessment of general reinforced concrete structures for a long time, but the effects of prestressing applied to concrete structures such as long-span buildings and bridges on ultrasonic pulse velocity have not been studied clearly. Therefore, this study analyzed the statistical distribution of P-wave ultrasonic pulse velocities in reinforced and prestressed concrete slabs of 3000 × 3000 mm with a thickness of 250 mm. In addition, we measured S- and R-waves to identify experimental consistency by statistical analysis using the Kolmogorov-Smirnov goodness-of-fit test. The experimental results show that the P-, S-, and R-wave velocities increased slightly (2-3%) when prestressing was applied. As expected, the S- and R-wave measurements show better statistical reliability and potential for in situ evaluation than the P-wave because they are less sensitive to confinement and boundary conditions. The experimental results in this study can be used when assessing the condition of prestressed concrete structures through the velocities of elastic waves.


2018 ◽  
Vol 33 (2) ◽  
pp. 241-247 ◽  
Author(s):  
Marit H. N. van Velzen ◽  
Robert Jan Stolker ◽  
Arjo J. Loeve ◽  
Sjoerd P. Niehof ◽  
Egbert G. Mik
Keyword(s):  

1932 ◽  
Vol 100 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Roberta Hafkesbring ◽  
Richard Ashman
Keyword(s):  

2012 ◽  
Vol 30 ◽  
pp. e25
Author(s):  
Yi Zhang ◽  
Davide Agnoletti ◽  
Michel E Safar ◽  
Jacques Blacher
Keyword(s):  

2015 ◽  
Vol 9 (1) ◽  
pp. 9-14
Author(s):  
Arun A. Joseph ◽  
Martin Fasshauser ◽  
Klaus-Dietmar Merboldt ◽  
Jens Frahm

Purpose: To evaluate aortic pulse wave velocities obtained by real-time phase-contrast (PC) MRI in comparison to cine PC MRI. Methods: Real-time PC MRI of eight healthy volunteers employed highly undersampled radial FLASH sequences and phase-sensitive image reconstructions by regularized nonlinear inversion (NLINV) at 40 ms temporal resolution and 1.3 mm in-plane resolution. Pulse wave velocities were analyzed for combinations of 2, 3 and 4 locations of aortic flow using time-to-upslope and cross-correlation methods. Results: For the time-to-upslope analysis mean pulse wave velocities ranged from 3.5 to 3.9 m s-1 for real-time PC MRI and from 3.5 to 3.8 m s-1 for cine PC MRI. A cross-correlation analysis of the same data resulted in 2.9 to 3.3 m s-1 and 3.3 to 3.7 m s-1, respectively. Conclusion: Real-time PC MRI determined aortic pulse wave velocities from single cardiac cycles in close correspondence to values obtained by cine PC MRI.


Warta Geologi ◽  
2021 ◽  
Vol 47 (1) ◽  
pp. 1-8
Author(s):  
John K. Raj

The main Beris Dam is founded on a sequence of thick bedded conglomerates and pebbly to fine grained sandstones with minor mudstone mapped as the Semanggol Formation of Triassic age. Ultrasonic pulse measurements show velocities of compressional and shear waves through the sandstones to increase with decreasing grain size; the pebbly sandstone with velocities of 2.210, and 5.171, km/s, and the coarse grained sandstone with velocities of 2.477, and 5.612, km/s, respectively. The medium grained sandstones have compressional and shear wave velocities of 2.457, and 5.793, km/s and the fine grained sandstones, velocities of 2.572, and 5.867 km/s, respectively. Dynamic elastic constants computed from the ultrasonic velocities also increase in values with decreasing grain size; Poisson’s ratio varying from 0.36 to 0.39, the modulus of elasticity from 35.076 to 48.210 GPa, the bulk modulus from 52.260 to 67.362 GPa and the modulus of rigidity from 12.637 to 17.468 GPa. Increasing velocities and elastic constants with decreasing grain size are considered to result from a denser arrangement of constituent grains as shown by increasing dry unit weights. Comparison with the results of an unconfined compression test on a fine grained sandstone indicate that the ultrasonic elastic constants are good approximations of static elastic constants.


Sign in / Sign up

Export Citation Format

Share Document