On the structural features of hairpin triloops in rRNA: From nucleotide to global conformational change upon ligand binding

2006 ◽  
Vol 153 (3) ◽  
pp. 207-222 ◽  
Author(s):  
Petar M. Mitrasinovic
2008 ◽  
Vol 8 (1) ◽  
pp. 13 ◽  
Author(s):  
Gary N Parkinson ◽  
David Vines ◽  
Paul C Driscoll ◽  
Snezana Djordjevic

1992 ◽  
Vol 285 (2) ◽  
pp. 419-425 ◽  
Author(s):  
U Christensen ◽  
L Mølgaard

The kinetics of a series of Glu-plasminogen ligand-binding processes were investigated at pH 7.8 and 25 degrees C (in 0.1 M-NaCl). The ligands include compounds analogous to C-terminal lysine residues and to normal lysine residues. Changes of the Glu-plasminogen protein fluorescence were measured in a stopped-flow instrument as a function of time after rapid mixing of Glu-plasminogen and ligand at various concentrations. Large positive fluorescence changes (approximately 10%) accompany the ligand-induced conformational changes of Glu-plasminogen resulting from binding at weak lysine-binding sites. Detailed studies of the concentration-dependencies of the equilibrium signals and the rate constants of the process induced by various ligands showed the conformational change to involve two sites in a concerted positive co-operative process with three steps: (i) binding of a ligand at a very weak lysine-binding site that preferentially, but not exclusively, binds C-terminal-type lysine ligands, (ii) the rate-determining actual-conformational-change step and (iii) binding of one more lysine ligand at a second weak lysine-binding site that then binds the ligand more tightly. Further, totally independent initial small negative fluorescence changes (approximately 2-4%) corresponding to binding at the strong lysine-binding site of kringle 1 [Sottrup-Jensen, Claeys, Zajdel, Petersen & Magnusson (1978) Prog. Chem. Fibrinolysis Thrombolysis 3, 191-209] were observed for the C-terminal-type ligands. The finding that the conformational change in Glu-plasminogen involves two weak lysine-binding sites indicates that the effect cannot be assigned to any single kringle and that the problem of whether kringle 4 or kringle 5 is responsible for the process resolves itself. Probably kringle 4 and 5 are both participating. The involvement of two lysine binding-sites further makes the high specificity of Glu-plasminogen effectors more conceivable.


1994 ◽  
Vol 303 (2) ◽  
pp. 413-421 ◽  
Author(s):  
S Beeckmans ◽  
A S Khan ◽  
L Kanarek ◽  
E Van Driessche

A kinetic and ligand binding study on maize (Zea mays) malate synthase is presented. It is concluded from kinetic measurements that the enzyme proceeds through a ternary-complex mechanism. Michaelis constants (Km,glyoxylate and Km,acetyl-CoA) were determined to be 104 microM and 20 microM respectively. C.d. measurements in the near u.v.-region indicate that a conformational change is induced in the enzyme by its substrate, glyoxylate. From these studies we are able to calculate the affinity for the substrate (Kd,glyoxylate) as 100 microM. A number of inhibitors apparently trigger the same conformational change in the enzyme, i.e. pyruvate, glycollate and fluoroacetate. Another series of inhibitors bearing more bulky groups and/or an extra carboxylic acid also induce a conformational change, which is, however, clearly different from the former one. Limited proteolysis with trypsin results in cleavage of malate synthase into two fragments of respectively 45 and 19 kDa. Even when no more intact malate synthase chains are present, the final enzymic activity still amounts to 30% of the original activity. If trypsinolysis is performed in the presence of acetyl-CoA, the cleavage reaction is appreciably slowed down. The dissociation constant for acetyl-CoA (Kd,acetyl-CoA) was calculated to be 14.8 microM when the glyoxylate subsite is fully occupied by pyruvate and 950 microM (= 50 x Km) when the second subsite is empty. It is concluded that malate synthase follows a compulsory-order mechanism, glyoxylate being the first-binding substrate. Glyoxylate triggers a conformational change in the enzyme and, as a consequence, the correctly shaped binding site for acetyl-CoA is created. Demetallization of malate synthase has no effect on the c.d. spectrum in the near u.v.-region. Moreover, glyoxylate induces the same spectral change in the absence of Mg2+ as in its presence. Nevertheless, malate synthase shows no activity in the absence of the cation. We conclude that Mg2+ is essential for catalysis, rather than for the structure of the enzyme's catalytic site.


2005 ◽  
Vol 280 (41) ◽  
pp. 34849-34858 ◽  
Author(s):  
Sung-Jun Han ◽  
Fadi F. Hamdan ◽  
Soo-Kyung Kim ◽  
Kenneth A. Jacobson ◽  
Lanh M. Bloodworth ◽  
...  

2004 ◽  
Vol 32 (5) ◽  
pp. 721-723 ◽  
Author(s):  
N. Beglova ◽  
H. Jeon ◽  
C. Fisher ◽  
S.C. Blacklow

The LDLR (low-density lipoprotein receptor) is a modular protein built from several distinct structural units: LA (LDLR type-A), epidermal growth factor-like and β-propeller modules. The low pH X-ray structure of the LDLR revealed long-range intramolecular contacts between the propeller domain and the central LA repeats of the ligand-binding domain, suggesting that the receptor changes its overall shape from extended to closed, in response to pH. Here we discuss how the LDLR uses flexibility and rigidity of linkers between modules to facilitate ligand binding and low-pH ligand release.


1990 ◽  
Vol 68 (11) ◽  
pp. 1482-1488 ◽  
Author(s):  
Balwant S. Tuana ◽  
Brian J. Murphy

The development of specific pharmacological agents that modulate different types of ion channels has prompted an extensive effort to elucidate the molecular structure of these important molecules. The calcium channel blockers that specifically modulate the L-type calcium channel activity have aided in the purification and reconstitution of this channel from skeletal muscle transverse tubules. The L-type calcium channel from skeletal muscle is composed of five subunits designated α1, α2, β, γ, and σ. The α1-subunit is the pore-forming polypeptide and contains the ligand binding and phosphorylation sites through which channel activity can be modulated. The role of the other subunits in channel function remains to be studied. The calcium channel components have also been partially purified from cardiac muscle. The channel consists of at least three subunits that have properties related to the subunits of the calcium channel from skeletal muscle. A core polypeptide that can form a channel and contains ligand binding and phosphorylation sites has been identified in cardiac preparations. Here we summarize recent biochemical and molecular studies describing the structural features of these important ion channels.Key words: dihydropyridine receptor, calcium channel, muscle, molecular structure.


Sign in / Sign up

Export Citation Format

Share Document