The upper limit of maturity of natural gas generation and its implication for the Yacheng formation in the Qiongdongnan Basin, China

2012 ◽  
Vol 54-55 ◽  
pp. 203-213 ◽  
Author(s):  
Long Su ◽  
Jianjing Zheng ◽  
Guojun Chen ◽  
Gongcheng Zhang ◽  
Jianming Guo ◽  
...  
2018 ◽  
Vol 36 (24) ◽  
pp. 2125-2131
Author(s):  
Long Su ◽  
Dongwei Zhang ◽  
Peng Liu ◽  
Ying Chen ◽  
Jihui Lin

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 549
Author(s):  
Eric Pareis ◽  
Eric Hittinger

With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.


Energy Policy ◽  
2013 ◽  
Vol 60 ◽  
pp. 116-121 ◽  
Author(s):  
Junfeng Hu ◽  
Gabe Kwok ◽  
Wang Xuan ◽  
James H. Williams ◽  
Fredrich Kahrl

2013 ◽  
Vol 734-737 ◽  
pp. 147-151
Author(s):  
Bo Zhang ◽  
Wen Tao Li ◽  
Zhi Hong Gan

Natural gas resource of Es1 layer in Yangxin subsag is very abundant. Natural gas formation, enrichment conditions and regularity are analyzed in this paper. Geochemistry analysis shows that natural gas resource of Es1 layer in Yangxin subsag belongs to biological origin gas. The sedimentary environment, ground temperature, gas source rock and preservation condition of the study area is advantageous, which provide a guarantee for natural gas generation and preservation. Research shows that natural gas enrichment in the lower part of Es1 layer because of limestone reservoir development, and on the horizontal direction natural gas is mainly enrichment in the eastern nose structure zone and southern slope zone. The both zones are the preferred zone for natural gas exploration in the study area.


2018 ◽  
Vol 48 (1) ◽  
pp. 44-70
Author(s):  
Kofi Nkansah ◽  
Alan R Collins

In 2009, West Virginia enacted an Alternative and Renewable Portfolio Act (APRA) to broaden its energy use for electricity beyond coal. A choice experiment survey was conducted to assess West Virginians’ willingness to pay (WTP) for 10 percent of electricity generated from wind energy versus natural gas. Results showed that residential consumers preferred electricity generated from wind, with annual per-capita WTP averaging from $19.25 to $26.75. Given the subsequent repeal of the APRA in 2015, we propose implementation of a voluntary green pricing program as an alternative policy to increase the share of renewable energy in West Virginia's energy portfolio.


Sign in / Sign up

Export Citation Format

Share Document