Magnetostratigraphy and 40Ar–39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences

2014 ◽  
Vol 89 ◽  
pp. 28-45 ◽  
Author(s):  
Stefan Schöbel ◽  
Helga de Wall ◽  
Morgan Ganerød ◽  
Manoj K. Pandit ◽  
Christian Rolf
2020 ◽  
Author(s):  
Blair Schoene ◽  
Michael P. Eddy ◽  
C. Brenhin Keller ◽  
Kyle M. Samperton

Abstract. Recent attempts to establish the eruptive history of the Deccan Traps large igneous province have used both U-Pb (Schoene et al., 2019) and 40Ar/39Ar (Sprain et al., 2019) geochronology. Both of these studies report dates with high precision and unprecedented coverage for a large igneous province, and agree that the main phase of eruptions began near the C30n-C29r magnetic reversal and waned shortly after the C29r-C29n reversal, totaling ~700-800 ka duration. Nevertheless, the eruption rates interpreted by the authors of each publication differ significantly. The U-Pb dataset was interpreted to indicate four major eruptive pulses, while the 40Ar/39Ar dataset was used to argue for an increase in eruption rates coincident with the Chicxulub impact (Renne et al., 2015; Richards et al., 2015). Although the overall agreement in duration is an achievement for geochronology, the disparate eruption models may act to undermine this achievement in the eyes of the broader geologic community. Here, we generate chronostratigraphic models for both datasets using the same statistical techniques and conclude that 1) age modeling of the 40Ar/39Ar dataset results in constant eruption rates with relatively large uncertainties through the duration of the Deccan Traps, and cannot verify or disprove the pulses identified by the U-Pb data, 2) the stratigraphic position of the Chicxulub impact within the 40Ar/39Ar dataset is much more uncertain than was presented in Sprain et al. (2019), and 3) neither dataset supports an increase in eruption rate as a result of the Chicxulub impact. While the production of precise and accurate geochronologic data is of course essential to studies of Earth History, our analysis underscores that the accuracy of a final result also is critically dependent on how such data are interpreted and presented to the broader community of geoscientists.


Geochronology ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 181-198
Author(s):  
Blair Schoene ◽  
Michael P. Eddy ◽  
C. Brenhin Keller ◽  
Kyle M. Samperton

Abstract. Recent attempts to establish the eruptive history of the Deccan Traps large igneous province have used both U−Pb (Schoene et al., 2019) and 40Ar/39Ar (Sprain et al., 2019) geochronology. Both of these studies report dates with high precision and unprecedented coverage for a large igneous province and agree that the main phase of eruptions began near the C30n–C29r magnetic reversal and waned shortly after the C29r–C29n reversal, totaling ∼ 700–800 kyr duration. These datasets can be analyzed in finer detail to determine eruption rates, which are critical for connecting volcanism, associated volatile emissions, and any potential effects on the Earth's climate before and after the Cretaceous–Paleogene boundary (KPB). It is our observation that the community has frequently misinterpreted how the eruption rates derived from these two datasets vary across the KPB. The U−Pb dataset of Schoene et al. (2019) was interpreted by those authors to indicate four major eruptive pulses before and after the KPB. The 40Ar/39Ar dataset did not identify such pulses and has been largely interpreted by the community to indicate an increase in eruption rates coincident with the Chicxulub impact (Renne et al., 2015; Richards et al., 2015). Although the overall agreement in eruption duration is an achievement for geochronology, it is important to clarify the limitations in comparing the two datasets and to highlight paths toward achieving higher-resolution eruption models for the Deccan Traps and for other large igneous provinces. Here, we generate chronostratigraphic models for both datasets using the same statistical techniques and show that the two datasets agree very well. More specifically, we infer that (1) age modeling of the 40Ar/39Ar dataset results in constant eruption rates with relatively large uncertainties through the duration of the Deccan Traps eruptions and provides no support for (or evidence against) the pulses identified by the U−Pb data, (2) the stratigraphic positions of the Chicxulub impact using the 40Ar/39Ar and U−Pb datasets do not agree within their uncertainties, and (3) neither dataset supports the notion of an increase in eruption rate as a result of the Chicxulub impact. We then discuss the importance of systematic uncertainties between the dating methods that challenge direct comparisons between them, and we highlight the geologic uncertainties, such as regional stratigraphic correlations, that need to be tested to ensure the accuracy of eruption models. While the production of precise and accurate geochronologic data is of course essential to studies of Earth history, our analysis underscores that the accuracy of a final result is also critically dependent on how such data are interpreted and presented to the broader community of geoscientists.


2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


2019 ◽  
Vol 486 (4) ◽  
pp. 460-465
Author(s):  
E. V. Sharkov ◽  
A. V. Chistyakov ◽  
M. M. Bogina ◽  
O. A. Bogatikov ◽  
V. V. Shchiptsov ◽  
...  

Tiksheozero ultramafic-alkaline-carbonatite intrusive complex, like numerous carbonatite-bearing complexes of similar composition, is a part of large igneous province, related to the ascent of thermochemical mantle plume. Our geochemical and isotopic data evidence that ultramafites and alkaline rocks are joined by fractional crystallization, whereas carbonatitic magmas has independent origin. We suggest that origin of parental magmas of the Tiksheozero complex, as well as other ultramafic-alkaline-carbonatite complexes, was provided by two-stage melting of the mantle-plume head: 1) adiabatic melting of its inner part, which produced moderately-alkaline picrites, which fractional crystallization led to appearance of alkaline magmas, and 2) incongruent melting of the upper cooled margin of the plume head under the influence of CO2-rich fluids  that arrived from underlying zone of adiabatic melting gave rise to carbonatite magmas.


Sign in / Sign up

Export Citation Format

Share Document