Kinematic, finite strain and vorticity analysis of the Sisters Shear Zone, Stewart Island, New Zealand

2015 ◽  
Vol 73 ◽  
pp. 114-129 ◽  
Author(s):  
Uwe Ring ◽  
Matthias Bernet ◽  
Andy Tulloch
2015 ◽  
Vol 51 (4) ◽  
pp. 670-681 ◽  
Author(s):  
Vincenzo Festa ◽  
Giacomo Prosser ◽  
Alfredo Caggianelli ◽  
Antonietta Grande ◽  
Antonio Langone ◽  
...  

2018 ◽  
Vol 502 ◽  
pp. 231-243 ◽  
Author(s):  
Felix Gross ◽  
Joshu J. Mountjoy ◽  
Gareth J. Crutchley ◽  
Christoph Böttner ◽  
Stephanie Koch ◽  
...  

2019 ◽  
Author(s):  
Matthew S. Tarling ◽  
Steven A. F. Smith ◽  
James M. Scott ◽  
Jeremy S. Rooney ◽  
Cecilia Viti ◽  
...  

Abstract. Deciphering the internal structural and composition of large serpentinite-dominated shear zones will lead to an improved understanding of the rheology of the lithosphere in a range of tectonic settings. The Livingstone Fault in New Zealand is a > 1000 km long terrane-bounding structure that separates the basal portions (peridotite; serpentinised peridotite; metagabbros) of the Dun Mountain Ophiolite Belt from quartzofeldspathic schists of the Caples or Aspiring Terranes. Field and microstructural observations from eleven localities along a strike length of c. 140 km show that the Livingstone Fault is a steeply-dipping, serpentinite-dominated shear zone tens to several hundreds of metres wide. The bulk shear zone has a pervasive scaly fabric that wraps around fractured and faulted pods of massive serpentinite, rodingite and partially metasomatised quartzofeldspathic schist up to a few tens of metres long. S-C fabrics and lineations in the shear zone consistently indicate a steep Caples-side-up (i.e. east-side-up) shear sense, with significant local dispersion in kinematics where the shear zone fabrics wrap around pods. The scaly fabric is dominated (> 98 vol %) by fine-grained (≪ 10 μm) fibrous chrysotile and lizardite/polygonal serpentine, but infrequent (


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 288
Author(s):  
Rodolfo Carosi ◽  
Alessandro Petroccia ◽  
Salvatore Iaccarino ◽  
Matteo Simonetti ◽  
Antonio Langone ◽  
...  

Detailed geological field mapping, integrated with meso- and microstructural investigations, kinematic of the flow and finite strain analyses, combined with geochronology, are fundamental tools to obtain information on the temperature–deformation–timing path of crystalline rocks and shear zone. The Posada-Asinara shear zone (PASZ) in northern Sardinia (Italy) is a steeply dipping km-thick transpressive shear zone. In the study area, located in the Baronie region (NE Sardinia), the presence of mylonites within the PASZ, affecting high- and medium-grade metamorphic rocks, provides an opportunity to quantify finite strain and kinematic vorticity. The main structures of the study area are controlled by a D2 deformation phase, linked to the PASZ activity, in which the strain is partitioned into folds and shear zone domains. Applying two independent vorticity methods, we detected an important variation in the percentage of pure shear and simple shear along the deformation gradient, that increases from south to north. We constrained, for the first time in this sector, the timing of the transpressive deformation by U–(Th)–Pb analysis on monazite. Results indicate that the shear zone has been active at ~325–300 Ma in a transpressive setting, in agreement with the ages of the other dextral transpressive shear zones in the southern Variscan belt.


Tectonics ◽  
2009 ◽  
Vol 28 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Joseph Kula ◽  
Andy J. Tulloch ◽  
Terry L. Spell ◽  
Michael L. Wells ◽  
Kathleen A. Zanetti

Sign in / Sign up

Export Citation Format

Share Document