scholarly journals Influence of the presence of carbon dioxide on chemical composition of water in contact with mining waste

2015 ◽  
Vol 14 (1) ◽  
pp. 38-45
Author(s):  
Magdalena Cempa-Balewicz
2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


2018 ◽  
Vol 216 ◽  
pp. 03001 ◽  
Author(s):  
Evgeny Ivanayskiy ◽  
Aleksei Ishkov ◽  
Aleksandr Ivanayskiy ◽  
Iakov Ochakovskii

The paper studies the influence of shielding gas on the composition and the structure of weld joint metal of 30MnB5 steel applied in essential parts of automobiles and tractors. The welding was performed in inert, oxidizing and reducing atmospheres. It was established that TIG welding with argon used as shielding gas did not provide the required mechanical properties when using conventional welding materials. Carbon dioxide during MAG welding caused partial burning of alloying elements. Carbon monoxide used as shielding gas was proved to form reducing atmosphere enabling to obtain chemical composition close to the base metal composition. Metallographic examinations were carried out. The obtained results provided full-strength weld, as well as the required reliability and durability of welded components and joints.


1973 ◽  
Vol 27 ◽  
pp. 2997-3002 ◽  
Author(s):  
Jens K. Wold ◽  
Tore Midtvedt ◽  
Randi Winsnes ◽  
Petri Pajunen ◽  
Jouko Koskikallio ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 79-88
Author(s):  
Z.O. Normakhmedova ◽  
◽  
A.V. Mitusov

This article presents the study results of the change dynamics in the chemical composition of water in Lake Iskanderkul and the rivers flowing into it, as well as the comparison of water quality in the water bodies of the Iskanderkul Basin and several mid-stream tributaries of the Zarafshan River. It was established that the chemical composition of water in Lake Iskanderkul and its tributaries meets the requirements of the corresponding state standard (GOST 2874-82 “Drinking Water”). However, in terms of dissolved oxygen, copper, zinc, lead and iron the water in Lake Iskanderkul does not satisfy fish farming requirements. The main water pollution sources in the area include such natural phenomena as floods, avalanches, mudslides, and rock dissolution.


Sign in / Sign up

Export Citation Format

Share Document