scholarly journals The application of seismic interferometry for estimating a 1D S-wave velocity model with the use of mining induced seismicity

2018 ◽  
Vol 17 (4) ◽  
pp. 209-214 ◽  
Author(s):  
Rafał Czarny ◽  
Zenon Pilecki ◽  
Dorota Drzewińska
2021 ◽  
Author(s):  
Mohamadhasan Mohamadian Sarvandani ◽  
Emanuel Kästle ◽  
Lapo Boschi ◽  
Sylvie Leroy ◽  
Mathilde Cannat

<p>Passive seismic interferometry (ambient-noise seismology) is an increasingly popular, eco-friendly, relatively inexpensive exploration geophysics tool, to map S-wave velocity in the Earth’s crust. This method has not yet been applied widely to marine exploration. The purpose of this study is to investigate the crustal structure of a quasi-amagmatic portion of the Southwest Indian Ridge by interferometry, and to examine the performance and reliability of interferometry in marine exploration. To achieve this goal, continuous vertical-component recordings from 43 ocean bottom seismometers (OBS) deployed during the SISMO-SMOOTH cruise (2014) were utilized. Recorded signals span frequencies between 0.1Hz and 3Hz. We show that reliable estimates of the Green’s function are obtained for many station pairs, by cross-correlation in the frequency domain. The comparison of the cross-correlations with the theoretical Green’s (Bessel) function provides one Rayleigh-wave dispersion curve per station pair; dispersion curves are then averaged, and inverted through a conditional neighborhood algorithm to determine a 1D S-wave velocity model, that we estimate to be well constrained within the crust. Our S-wave velocity model is analyzed and interpreted with geological information, and independent geophysical studies in the region of interest, as well as other areas characterized by similar tectonically-dominated, quasi amagmatic spreadings.</p>


2017 ◽  
Vol 122 (8) ◽  
pp. 6703-6720 ◽  
Author(s):  
Xingchen Wang ◽  
Yonghua Li ◽  
Zhifeng Ding ◽  
Lupei Zhu ◽  
Chunyong Wang ◽  
...  

2021 ◽  
pp. M56-2020-19
Author(s):  
E. R. Ivins ◽  
W. van der Wal ◽  
D. A. Wiens ◽  
A. J. Lloyd ◽  
L. Caron

AbstractThe Antarctic mantle and lithosphere are known to have large lateral contrasts in seismic velocity and tectonic history. These contrasts suggest differences in the response time scale of mantle flow across the continent, similar to those documented between the northeastern and southwestern upper mantle of North America. Glacial isostatic adjustment and geodynamical modeling rely on independent estimates of lateral variability in effective viscosity. Recent improvements in imaging techniques and the distribution of seismic stations now allow resolution of both lateral and vertical variability of seismic velocity, making detailed inferences about lateral viscosity variations possible. Geodetic and paleo sea-level investigations of Antarctica provide quantitative ways of independently assessing the three-dimensional mantle viscosity structure. While observational and causal connections between inferred lateral viscosity variability and seismic velocity changes are qualitatively reconciled, significant improvements in the quantitative relations between effective viscosity anomalies and those imaged by P- and S-wave tomography have remained elusive. Here we describe several methods for estimating effective viscosity from S-wave velocity. We then present and compare maps of the viscosity variability beneath Antarctica based on the recent S-wave velocity model ANT-20 using three different approaches.


2020 ◽  
Vol 10 (19) ◽  
pp. 6763
Author(s):  
Pingan Peng ◽  
Yuanjian Jiang ◽  
Liguan Wang ◽  
Zhengxiang He ◽  
Siyu Tu

The accurate localization of mining-induced seismicity is crucial to underground mines. However, the constant velocity model is used by traditional location methods without considering the great difference in wave velocity between rock mass and underground voids. In this paper, to improve the microseismicity location accuracy in mines, we present a fast ray-tracing method to calculate the ray path and travel time from source to receiver considering underground voids. First, we divide the microseismic monitoring area into two categories of mediums—voids and non-voids—using a flexible triangular patch to model the surface model of voids, which can accurately describe any complicated three-dimensional (3D) shape. Second, the nodes are divided into two categories. The first category of the nodes is the vertex of the model, and the second category of the nodes is arranged at a certain step length on each edge of the 3D surface model to improve the accuracy of ray tracing. Finally, the set of adjacent nodes of each node is calculated, and then we obtain the shortest travel time from the source to the receiver based on the Dijkstra algorithm. The performance of the proposed method is tested by numerical simulation. Results show that the proposed method is faster and more accurate than the traditional ray-tracing methods. Besides, the proposed ray-tracing method is applied to the microseismic source localization in the Huangtupo Copper and Zinc Mine. The location accuracy is significantly improved compared with the traditional method using the constant velocity model and the FMM-based location method.


2019 ◽  
Vol 92 ◽  
pp. 18006
Author(s):  
Yannick Choy Hing Ng ◽  
William Danovan ◽  
Taeseo Ku

Seismic cross-hole tomography has been commonly used in oil and gas exploration and the mining industry for the detection of precious resources. For near-surface geotechnical site investigation, this geophysical method is relatively new and can be used to supplement traditional methods such as the standard penetration test, coring and sampling, thus improving the effectiveness of site characterization. This paper presents a case study which was carried out on a reclaimed land in the Eastern region of Singapore. A seismic cross-hole test was performed by generating both compressional waves and shear waves into the ground. The signals were interpreted by using first-arrival travel time wave tomography and the arrival times were subsequently inverted using Simultaneous Iterative Reconstruction Technique (SIRT). A comparison with the borehole logging data indicated that P-wave velocity model cannot provide sufficient information about the soil layers, especially when the ground water table is near the surface. The S-wave velocity model seemed to agree quite well with the variation in the SPT-N value and could identify to a certain extent the interface between the different soil layers. Finally, P-wave and S-wave velocities are used to compute the Poisson's ratio distribution which gave a good indication of the degree of saturation of the soil.


2013 ◽  
Vol 582 ◽  
pp. 84-100 ◽  
Author(s):  
Hyun-Moo Cho ◽  
Chang-Eob Baag ◽  
Jung Mo Lee ◽  
Wooil M. Moon ◽  
Heeok Jung ◽  
...  

Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 35-45
Author(s):  
Jarrod C. Dunne ◽  
Greg Beresford ◽  
Brian L. N Kennett

We developed guidelines for building a detailed elastic depth model by using an elastic synthetic seismogram that matched both prestack and stacked marine seismic data from the Gippsland Basin (Australia). Recomputing this synthetic for systematic variations upon the depth model provided insight into how each part of the model affected the synthetic. This led to the identification of parameters in the depth model that have only a minor influence upon the synthetic and suggested methods for estimating the parameters that are important. The depth coverage of the logging run is of prime importance because highly reflective layering in the overburden can generate noise events that interfere with deeper events. A depth sampling interval of 1 m for the P-wave velocity model is a useful lower limit for modeling the transmission response and thus maintaining accuracy in the tie over a large time interval. The sea‐floor model has a strong influence on mode conversion and surface multiples and can be built using a checkshot survey or by testing different trend curves. When an S-wave velocity log is unavailable, it can be replaced using the P-wave velocity model and estimates of the Poisson ratio for each significant geological formation. Missing densities can be replaced using Gardner’s equation, although separate substitutions are required for layers known to have exceptionally high or low densities. Linear events in the elastic synthetic are sensitive to the choice of inelastic attenuation values in the water layer and sea‐floor sediments, while a simple inelastic attenuation model for the consolidated sediments is often adequate. The usefulness of a 1-D depth model is limited by misties resulting from complex 3-D structures and the validity of the measurements obtained in the logging run. The importance of such mis‐ties can be judged, and allowed for in an interpretation, by recomputing the elastic synthetic after perturbing the depth model to simulate the key uncertainties. Taking the next step beyond using simplistic modeling techniques requires extra effort to achieve a satisfactory tie to each part of a prestack seismic record. This is rewarded by the greater confidence that can then be held in the stacked synthetic tie and applications such as noise identification, data processing benchmarking, AVO analysis, and inversion.


Sign in / Sign up

Export Citation Format

Share Document