Pharmacologic Pre-conditioning With The Gasotransmitter Hydrogen Sulfide Confers Protection Through An Increase In Reactive Oxygen Species

2011 ◽  
Vol 165 (2) ◽  
pp. 183
Author(s):  
N. Jimenez ◽  
A.J. Reiffel ◽  
E. Israely ◽  
P.W. Henderson ◽  
J.A. Spector
2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


ACS Sensors ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 319-326 ◽  
Author(s):  
Ning Zhang ◽  
Ping Hu ◽  
Yanfang Wang ◽  
Qing Tang ◽  
Qiang Zheng ◽  
...  

2019 ◽  
Vol 10 (33) ◽  
pp. 7690-7694 ◽  
Author(s):  
Yiming Hu ◽  
Xiaoyi Li ◽  
Yu Fang ◽  
Wen Shi ◽  
Xiaohua Li ◽  
...  

A reactive oxygen species-triggered off-on fluorescence H2S donor is develop for the real-time imaging of H2S delivery and the cytoprotection against the hazardous oxidative environment.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Sashko Georgiev Spassov ◽  
Rosa Donus ◽  
Paul Mikael Ihle ◽  
Helen Engelstaedter ◽  
Alexander Hoetzel ◽  
...  

The development of ventilator-induced lung injury (VILI) is still a major problem in mechanically ventilated patients. Low dose inhalation of hydrogen sulfide (H2S) during mechanical ventilation has been proven to prevent lung damage by limiting inflammatory responses in rodent models. However, the capacity of H2S to affect oxidative processes in VILI and its underlying molecular signaling pathways remains elusive. In the present study we show that ventilation with moderate tidal volumes of 12 ml/kg for 6 h led to an excessive formation of reactive oxygen species (ROS) in mice lungs which was prevented by supplemental inhalation of 80 parts per million of H2S. In addition, phosphorylation of the signaling protein Akt was induced by H2S. In contrast, inhibition of Akt by LY294002 during ventilation reestablished lung damage, neutrophil influx, and proinflammatory cytokine release despite the presence of H2S. Moreover, the ability of H2S to induce the antioxidant glutathione and to prevent ROS production was reversed in the presence of the Akt inhibitor. Here, we provide the first evidence that H2S-mediated Akt activation is a key step in protection against VILI, suggesting that Akt signaling limits not only inflammatory but also detrimental oxidative processes that promote the development of lung injury.


Sign in / Sign up

Export Citation Format

Share Document