Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells

2015 ◽  
Vol 198 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Günter Finkenzeller ◽  
Gerhard Björn Stark ◽  
Sandra Strassburg
2018 ◽  
Vol 5 (7) ◽  
pp. 2480-2492
Author(s):  
Alexander E. Berezin ◽  
Alexander A. Kremzer ◽  
Daniel Petrovich ◽  
Ioana Mozos ◽  
Alexander A. Berezin

The objective: to investigate the relationship between levels of growth differentiation factor-15 (GDF-15) and circulating number of endothelial progenitor cells (EPCs) with angiopoietin phenotypes: CD34+CD14+CD309+, and CD34+CD14+CD309+Tie2+ in patients with type 2 DM. Methods: The study was retrospectively involved 76 patients with type 2 DM aged 38 to 55 years and 30 healthy volunteers. Data collection included demographic and anthropometric information, hemodynamic performances and biomarkers of the diseases. Flow cytometry was used to determine EPCs' populations. Results: The levels of GDF-15 in peripheral blood of diabetics associated with age (r = 0.31, P = 0.044), high-sensitive C-reactive protein [hs-CRP] (r = 0.40, P = 0.001), smoking (r = 0.38, P = 0.001), body mass index [BMI] (r = 0.34, P = 0.001), LDL cholesterol (r = 0.28, P = 0.001), glycated hemoglobin [HbA1c] (r = -0.28, P = 0.001), number of CV risk factors (r = 0.26, P = 0.001). In univariate logistic regression analysis we found that level of GDF-15 ≥ 618 pg/mL, hs-CRP ≥7.12 mg/L, HbA1c ≥6.4%, fasting glucose ≥6.7 mmol/L, and BMI ≥27.3 kg/m2 predicted deficiency of both angiopoetic phenotypes of EPCs. In multivariate logistic regression model GDF-15 ≥618 pg/mL demonstrated the best odds ratio values for declining of EPCs in diabetics in comparison with other predictors including BMI, HbA1c and hs-CRP. Conclusion: GDF-15 was remarkably evaluated in type 2 DM population to healthy volunteers, and it was an independent factor that contributes to mobilization and probably proliferation of endothelial precursors with high angiopoetic activity.


Author(s):  
Alexander A. Kremzer ◽  
Ivan M. Fushtey ◽  
Alexander A. Berezin

RELATION OF GROWTH-DIFFERENTIATION FACTOR-15 LEVELS AND NUMBER OF CIRCULATING ENDOTHELIAL PROGENITOR CELLS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS


2007 ◽  
Vol 30 (4) ◽  
pp. 96
Author(s):  
Michael R. Ward ◽  
Qiuwang Zhang ◽  
Duncan J. Stewart ◽  
Michael J.B. Kutryk

Autologous endothelial progenitor cells (EPCs) have been used extensively in the development of cell-based therapy for acute MI. However, EPCs isolated from patients with CAD and/or CAD risk factors have reduced regenerative activity compared to cells from healthy subjects. As in endothelial cells, endothelial NO synthase (eNOS) expression and subsequent NO production are believed to be critical determinants of EPC function. Recently, the ability of EPCs to migrate in vitro in response to chemotactic stimuli has been shown to predict their regenerative capacity in clinical studies. Therefore, we hypothesized that the regenerative function of EPCs from patients with or at high risk for CAD will be enhanced by overexpression of eNOS, as assessed by migratory capacity. Methods: EPCs were isolated from the blood of human subjects with CAD risk factors (>15% Framingham risk score; FRS) (± CAD) by Ficoll gradient separation and differential culture. Following 3 days in culture, cells were transduced using lentivirus vectors containing either eNOS or GFP (sham) at an MOI of 3. The cells were cultured for an additional 5 days before being used in functional assays. Cell migration and chemotaxis in response to VEGF (50 ng/mL) and SDF-1 (100 ng/mL) were assessed using a modified Boyden Chamber assay. Results: Transduction at an MOI of 3 led to a ~90-100-fold increase in eNOS mRNA expression and a 5-6 fold increase in eNOS protein expression, as assessed by qRT-PCR and Western Blotting. Moreover, there was a significant improvement in the migration of EPCs following eNOS transduction compared to sham-transduced EPCs in response to both VEGF (44.3 ± 8.4 vs. 31.1 ± 4.6 cells/high power field; n=10, p < 0.05) and SDF-1 (51.9 ± 11.1 vs. 34.5 ± 3.3 cells/HPF; n=10, p < 0.05). Conclusions: These data show that the reduced migration capacity of EPCs isolated from patients with CAD and/or CAD risk factors can be significantly improved through eNOS overexpression in these cells. Thus, eNOS transduction of autologous EPCs may enhance their ability to restore myocardial perfusion and function following acute MI. We intend to further explore the regenerative potential of eNOS-transduced EPCs using various in vitro and in vivo models.


Sign in / Sign up

Export Citation Format

Share Document