A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code

2006 ◽  
Vol 296 (4-5) ◽  
pp. 757-776 ◽  
Author(s):  
N. Gil-Negrete ◽  
J. Viñolas ◽  
L. Kari
2005 ◽  
Vol 12 (2) ◽  
pp. 91-107 ◽  
Author(s):  
N. Gil-Negrete ◽  
A. Rivas ◽  
J. Viñolas

A novel and promising approach for the prediction of the dynamic stiffness of hydrobushings is presented, combining Finite Element and CFD methods. The rubber structure of the mount is modelled in ABAQUS and the flow of fluid through the inertia track is calculated in FLUENT. The obtained results from the latter simulation are incorporated in the finite element code for the final stiffness prediction. The calculation is very sensitive to both rubber and fluid properties. The dynamic behaviour of rubber material has accurately been characterised with a new simple shear specimen in a forced non-resonant test.Satisfactory results are obtained when comparing numerical simulations to experimental tests in a practical application. Discrepancies between simulations and tests are mainly due to the simplifications assumed when creating the model. Nevertheless, stiffness of the mount is well predicted and so is the damping, although the frequency at which its maximum value is achieved is underestimated by 4–6 Hz, result that could be improved if non-stationary boundary conditions were considered when solving the fluid flow and incorporating it to the finite element code.


2014 ◽  
Vol 626 ◽  
pp. 40-45 ◽  
Author(s):  
Yoshihiro Tomita ◽  
Takenori Honma ◽  
Kisaragi Yashiro

New finite element homogenization model with nonaffine constitutive equation of rubber is developed to study the deformation behavior of silica-filled rubber under monotonic and cyclic deformation. The obtained results clarified the effect of the volume fraction of the silica coupling agent and the networklike structure connecting the silica particles on essential physical enhancement mechanisms of deformation resistance and hysteresis loss for silica-filled rubber. The finding suggests that the material characteristics of silica-filled rubber are much more controllable than those of carbon-black-filled rubber.


2015 ◽  
Vol 6 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Junping Song ◽  
Lianxiang Ma ◽  
Yan He ◽  
Wei Li ◽  
Shi-Chune Yao

1989 ◽  
Vol 62 (7) ◽  
pp. 448-458
Author(s):  
Kunihiko FUJIMOTO ◽  
Tatsuhiko HATAKEYAMA

2001 ◽  
Vol 32 (10-11) ◽  
pp. 759-767 ◽  
Author(s):  
B Patzák ◽  
Z Bittnar

2012 ◽  
Vol 19 (01) ◽  
pp. 1250003
Author(s):  
JIAN CHEN ◽  
YONGZHONG JIN ◽  
JINGYU ZHANG ◽  
YAFENG WU ◽  
CHUNCAI MENG

Bound rubber in carbon black (CB) filled rubber (natural rubber (NR) and styrene–butadiene rubber (SBS)) was prepared by the solvent method. The nanomorphology of CB and rubber/CB soluble rubber was observed by atomic force microscope. The results show that high-structure CB DZ13 has a "grape cluster" structure which consists of many original particles with the grain size of about 30–50 nm. Graphitizing process of CB decreases the amount of bound rubber. The NR/DZ13 soluble rubber with island–rim structure has been obtained, where the islands are DZ13 particles and the rims around the islands are occupied by NR film. But when the graphitized DZ13 particles were used as fillers of rubber, we have only observed that some graphitized DZ13 particles were deposited on the surface of the globular-like NR molecular chains, instead of the spreading of NR molecular chains along the surface of DZ13 particles, indicating that graphitized DZ13 has lower chemical activity than ungraphitized DZ13. Especially, we have already observed an interesting unusual bound rubber phenomenon, the blocked "bracelet" structure with the diameter of about 600 nm in which CB particles were blocked in ring-shaped SBS monomer.


1993 ◽  
Vol 66 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Asahiro Ahagon

Abstract Analysis is made for the origin of the mixing-induced tensile property variation of a filled rubber. Attention is paid to the hydrodynamic effect f(ϕe) of the filler, defined here as the factor to adjust the deviation of 100% modulus from the theory of rubber elasticity. For the rubbers mixed under variety of conditions, the f(ϕe)'s are calculated from the observed values of the modulus, at 25°C and 100°C, and the crosslink density. The variation of the f(ϕe) is considered to be governed by the mobility of the polymer confined in agglomerates of the filler. The mobility variation due to mixing seems to be mainly influenced by agglomerate size at 25°C, and by agglomerate size and chemical constraints at 100°C. Therefore, the f(ϕe)'s at the two temperatures are suggested to be useful measures of the state of carbon-black micro-dispersion. The extensibility of the rubbers is closely related f(ϕe). This indicates that the failure property is also governed by the mobility of the confined polymer.


Sign in / Sign up

Export Citation Format

Share Document