Unusual gyroscopic system eigenvalue behavior in high-speed planetary gears

2013 ◽  
Vol 332 (7) ◽  
pp. 1820-1828 ◽  
Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker
Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

The structured properties of the critical speeds and associated critical speed eigenvectors of high-speed planetary gears are given. Planetary gears have only planet, rotational, and translational mode critical speeds. Divergence instability is possible at speeds adjacent to critical speeds. Numerical results verify the critical speed locations. Divergence and flutter instabilities are investigated numerically for each mode type.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

This study investigates the modal property structure of high-speed planetary gears with gyroscopic effects. The vibration modes of these systems are complex-valued and speed-dependent. Equally-spaced and diametrically-opposed planet spacing are considered. Three mode types exist, and these are classified as planet, rotational, and translational modes. The properties of each mode type and that these three types are the only possible types are mathematically proven. Reduced eigenvalue problems are determined for each mode type. The eigenvalues for an example high-speed planetary gear are determined over a wide range of carrier speeds. Divergence and flutter instabilities are observed at extremely high speeds.


2011 ◽  
Vol 86 ◽  
pp. 374-379 ◽  
Author(s):  
Xiao Yu Gu ◽  
Philippe Velex

A non-linear dynamic model of planetary gears is presented which accounts for planet position errors, time-varying non-linear mesh stiffness along with the interactions between deflections and instantaneous meshing conditions. The quasi-static load distributions agree well with the experimental results in the literature thus validating the contact simulation. Extensions towards high-speed behaviour are presented which show how dynamic effects may impact the instantaneous load sharing amongst the planets.


2017 ◽  
Vol 7 (1) ◽  
pp. 2-6 ◽  
Author(s):  
A Masoumi ◽  
M Barbieri ◽  
F Pellicano ◽  
A Zippo ◽  
M Strozzi
Keyword(s):  

Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

This study demonstrates interesting and unusual gyroscopic system eigenvalue behavior observed in a lumped-parameter planetary gear model. The focus of this work is on the eigenvalue phenomena that occur at especially high speeds rather than practical planetary gear behavior. The behaviors include calculation of exact trajectories across critical speeds, uncommon stability features near degenerate critical speeds, and unique stability transitions. These eigenvalue behaviors differ from those of other gyroscopic systems such as spinning disks, shafts, and rings, and axially-moving media.


2013 ◽  
Vol 69 ◽  
pp. 59-71 ◽  
Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

This study investigates the vibration structure of high-speed, gyroscopic planetary gears. The vibration modes of these systems are complex-valued and speed dependent. Three mode types exist, and these are classified as planet, rotational, and translational modes. Each mode type is mathematically proven by the use of a candidate mode method. Reduced eigenvalue problems are determined for each mode type. The eigenvalues for an example high-speed planetary gear are determined over a wide range of carrier speeds. Divergence and flutter instabilities are observed at extremely high speeds.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Sign in / Sign up

Export Citation Format

Share Document