Vibration Structure of Gyroscopic Planetary Gears

Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

This study investigates the vibration structure of high-speed, gyroscopic planetary gears. The vibration modes of these systems are complex-valued and speed dependent. Three mode types exist, and these are classified as planet, rotational, and translational modes. Each mode type is mathematically proven by the use of a candidate mode method. Reduced eigenvalue problems are determined for each mode type. The eigenvalues for an example high-speed planetary gear are determined over a wide range of carrier speeds. Divergence and flutter instabilities are observed at extremely high speeds.

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

This study investigates the modal property structure of high-speed planetary gears with gyroscopic effects. The vibration modes of these systems are complex-valued and speed-dependent. Equally-spaced and diametrically-opposed planet spacing are considered. Three mode types exist, and these are classified as planet, rotational, and translational modes. The properties of each mode type and that these three types are the only possible types are mathematically proven. Reduced eigenvalue problems are determined for each mode type. The eigenvalues for an example high-speed planetary gear are determined over a wide range of carrier speeds. Divergence and flutter instabilities are observed at extremely high speeds.


1999 ◽  
Vol 121 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Jian Lin ◽  
R. G. Parker

This work develops an analytical model of planetary gears and uses it to investigate their natural frequencies and vibration modes. The model admits three planar degrees of freedom for each of the sun, ring, carrier and planets. It includes key factors affecting planetary gear vibration such as gyroscopic effects and time-varying stiffness. For the linear, time-invariant case, examination of the associated eigenvalue problem reveals the well-defined structure of the vibration modes, where the special structure results from the cyclic symmetry of planetary gears. Vibration modes are classified into rotational, translational and planet modes. The unique characteristics of each type of mode are analytically investigated in detail. For each class of mode, reduced-order eigenvalue problems are derived.


Author(s):  
Robert G. Parker ◽  
Xionghua Wu

The distinctive modal properties of equally spaced planetary gears with elastic ring gears are studied through perturbation and a candidate mode method. All eigenfunctions fall into one of four mode types whose structured properties are derived analytically. Two perturbations are used to obtain closed-form expressions of all the eigenfunctions. In the Discrete Planetary Perturbation (DPP), the unperturbed system is a discrete planetary gear with a rigid ring. The stiffness of the ring is perturbed from infinite to a finite number. In the Elastic Ring Perturbation (ERP), the unperturbed system is an elastic ring supported by the ring-planet mesh springs; the sun, planet and carrier motions are treated as small perturbations. A subsequent candidate mode method analysis proves the perturbation results and removes any reliance on perturbation parameters being small. All vibration modes are classified into rotational, translational, planet and purely ring modes. The well defined properties of each type of mode are analytically determined. All modal properties are verified numerically.


Author(s):  
Jian Lin ◽  
Robert G. Parker

Abstract This work develops an analytical model of planetary gears and uses it to investigate their natural frequencies and vibration modes. The model admits three planar degrees of freedom for each of the sun, ring, carrier and planets. It includes key factors affecting planetary gear vibration such as gyroscopic effects, time-varying stiffness, and static transmission error excitation. For the linear time-invariant case, examination of the associated eigenvalue problem reveals the well-defined structure of the vibration modes, where the special structure results from the cyclic symmetry of planetary gears. Vibration modes are classified into rotational, translational and planet modes. The unique characteristics of each type of mode are analytically investigated in detail. For each class of mode, reduced-order eigenvalue problems are derived. The modal strain energy distributions are also discussed.


2020 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Fuchun Yang ◽  
Dianrui Wang

Vibration properties of high-speed rotating and revolving planet rings with discrete and partially distributed stiffnesses were studied. The governing equations were obtained by Hamilton’s principle based on a rotating frame on the ring. The governing equations were cast in matrix differential operators and discretized, using Galerkin’s method. The eigenvalue problem was dealt with state space matrix, and the natural frequencies and vibration modes were computed in a wide range of rotation speed. The properties of natural frequencies and vibration modes with rotation speed were studied for free planet rings and planet rings with discrete and partially distributed stiffnesses. The influences of several parameters on the vibration properties of planet rings were also investigated. Finally, the forced responses of planet rings resulted from the excitation of rotating and revolving movement were studied. The results show that the revolving movement not only affects the free vibration of planet rings but results in excitation to the rings. Partially distributed stiffness changes the vibration modes heavily compared to the free planet ring. Each vibration mode comprises several nodal diameter components instead of a single component for a free planet ring. The distribution area and the number of partially distributed stiffnesses mainly affect the high-order frequencies. The forced responses caused by revolving movement are nonlinear and vary with a quasi-period of rotating speed, and the responses in the regions supported by partially distributed stiffnesses are suppressed.


1975 ◽  
Vol 97 (3) ◽  
pp. 341-348 ◽  
Author(s):  
R. J. Boness ◽  
J. J. Chapman

This paper reports on a study of ball motion, including the measurement of ball rolling axis, in deep groove bearings operating at high speeds under thrust load conditions. The technique employed relies on viewing the test bearing, operating in the conventional fixed outer ring mode, through a rotating prism which eliminates optically the gross rotation of the separator. Videotape recordings of a selected ball, distinctively marked and illuminated stroboscopically, allows a complete analysis of ball bearing kinematics. Experimental results of separator speed, ball speed and rolling axis together with separator slip, ball slip and spin velocities at both the inner and outer raceway contacts are presented for a wide range of loads and shaft speeds up to 12,000 rev/min. These results are compared with the existing theory of Jones. Discrepancies between predicted and actual ball motion are due to the assumption made by Jones in neglecting bearing element slip. A further analysis of the experimental results including both gyroscopic torques and slip based on elastohydrodynamic traction values for the test lubricant explains actual ball motion more fully.


Author(s):  
B. A. Jujnovich ◽  
D. Cebon

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a “command steer” control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, “active” steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range.


Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

This study analytically investigates the vibration of high-speed, compliant gear pairs using a model consisting of coupled, spinning, elastic rings. The gears are elastically coupled by a space-fixed, discrete stiffness element that represents the contacting gear teeth. Hamilton’s principle is used to derive the nonlinear governing equations of motion and boundary conditions. These equations are linearized for small vibrations about the steady equilibrium due to rotation. The equations are cast in operator form, which exemplifies their gyroscopic system structure. The eigenvalue problem is discretized using Galerkin’s method. The natural frequencies and vibration modes for an example aerospace gear pair are numerically calculated for a wide-range of rotation speeds. The system coupling leads to multiple eigenvalue veering regions as the gear rotation speed varies. Highly coupled vibration modes that have meaningful deflection in the discrete mesh stiffness occur within a set frequency band. The vibration modes within this band have distinct nodal diameter components that evolve with rotation speed.


2013 ◽  
Vol 300-301 ◽  
pp. 978-981
Author(s):  
Jun Gang Wang ◽  
Yong Wang ◽  
Zhi Pu Huo

A translational-rotational-coupling dynamic model has been built in the carrier-attached coordinate system.Differential equations of the system have been derived, and the natural frequencies and vibration modes of the planetary gear set have been obtained through solution of the associated eigenvalue problem. Based on the properties of the transmission system, the vibration modes of 2K-H spur planetary gear set can be classified into three categories, i.e., translational mode along radial direction, rotational mode, and planet mode.


Author(s):  
Yichao Guo ◽  
Robert G. Parker

This paper studies sensitivity of compound planetary gear natural frequencies and vibration modes to system parameters. Based on a lumped parameter model of general compound planetary gears and their distinctive modal properties [1], the eigensensitivities to inertias and stiffnesses are calculated and expressed in compact formulae. Analysis reveals that eigenvalue sensitivities to stiffness parameters are directly proportional to modal strain energies, and eigenvalue sensitivities to inertia parameters are proportional to modal kinetic energies. Furthermore, the eigenvalue sensitivities to model parameters are determined by inspection of the modal strain and kinetic energy distributions. This provides an effective way to identify those parameters with the greatest impact on tuning certain natural frequencies. The present results, combined with the modal properties of general compound planetary gears, show that rotational modes are independent of translational bearing/shaft stiffnesses and masses of carriers/central gears, translational modes are independent of torsional bearing/shaft stiffnesses and moment of inertias of carriers/central gears, and planet modes are independent of all system parameters of other planet sets, the shaft/bearing stiffness parameters of carriers/rings, and the mass/moment of inertia parameters of carriers/central gears.


Sign in / Sign up

Export Citation Format

Share Document