A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow

2016 ◽  
Vol 384 ◽  
pp. 294-311 ◽  
Author(s):  
Dong Yang ◽  
Aimee S. Morgans
2017 ◽  
Vol 830 ◽  
pp. 660-680 ◽  
Author(s):  
T. Kataoka ◽  
S. J. Ghaemsaidi ◽  
N. Holzenberger ◽  
T. Peacock ◽  
T. R. Akylas

The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency, $N$, is investigated. This variant of the widely studied horizontal configuration – where a cylinder aligned with a plane of constant gravitational potential induces four wave beams that emanate from the cylinder, forming a cross pattern known as the ‘St. Andrew’s Cross’ – brings out certain unique features of radiated internal waves from a line source tilted to the horizontal. Specifically, simple kinematic considerations reveal that for a cylinder inclined by a given angle $\unicode[STIX]{x1D719}$ to the horizontal, there is a cutoff frequency, $N\sin \unicode[STIX]{x1D719}$, below which there is no longer a radiated wave field. Furthermore, three-dimensional effects due to the finite length of the cylinder, which are minor in the horizontal configuration, become a significant factor and eventually dominate the wave field as the cutoff frequency is approached; these results are confirmed by supporting laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cutoff frequency as the group-velocity component perpendicular to the cylinder direction vanishes at cutoff; as a result, energy cannot be easily radiated away from the source, and nonlinear and viscous effects are likely to come into play. This scenario is examined by adapting the model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted line source of large but finite length. According to this model, the combination of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of energy, through the action of Reynolds stresses, to a circulating horizontal mean flow. Experimental evidence of such an induced mean flow near cutoff is also presented.


Author(s):  
R. Grimshaw

AbstractEquations are derived which describe the evolution of the mean flow generated by a progressing water wave packet. The effect of friction is included, and so the equations are subject to the boundary conditions first derived by Longuet-Higgins [10]. Solutions of the equations are obtained for a wave packet of finite length, and also for a uniform wave train. The latter solution is compared with experiments.


Author(s):  
David A. Hullender ◽  
Natalie N. Snyder ◽  
Jan C. Gans

It is not uncommon for simulation models for the dynamics of hydraulic systems to contain fluid lines with turbulent flow. This paper demonstrates applications of an analytical model for pressure transients in lines with turbulent flow for lines with boundary conditions defined by hydraulic components such as pumps, valves, actuators, and restrictions; the model can be simplified for cases of laminar flow. The equations for conducting simulations with time varying inputs and for calculating eigenvalues of systems in which fluid lines are internal components are formulated. For an example demonstrating application of the equations, the model is used to simulate and optimize the performance of a hydraulic fracking system which involves the pumping of large volumes of water with additives through pipes under turbulent flow conditions into rock fissures. Specifically, the model is used to generate the frequency response of the flow transients in the pipe resulting from pump flow pulsations. This frequency response is then used to compute the eigenvalues of the system. The model is then used to conduct time domain simulations to determine the potential flow amplifications into rock fissures associated with pulsing the flow from the pump at the resonant frequency of the pressure transients in the pipe. The results reveal flow amplifications into the fissures of up to 22 times depending on the pulse shape of the input flow, the Reynolds number of the mean flow, the fluid properties of the slurry, and the length and diameter of the pipe.


Author(s):  
Yongliang Wang ◽  
Yu Gao ◽  
Jingjun Zhong ◽  
Ling Yang ◽  
Huawei Lu

Squeeze film dampers (SFDs) are widely used in aero-engines and other high speed rotating machines as damping elements, owing to their remarkable damping effect. The oil-film force model of SFDs is the key to investigate the dynamic characteristics of the rotor-bearing systems involving SFDs. In this paper, the analytical solution of the oil film pressure of a finite length SFD is obtained by employing the separation of variables method to solve the Reynolds equation (at low Reynolds number) based upon the dynamic π boundary condition. The analytical expression of the oil film force is then derived by applying the integral method. The oil film force from the analytical model is compared with the results from other well-known methods, i.e. the long bearing approximation, the short bearing approximation and the finite difference method. The results clearly show that within a wider length-diameter ratio range, the newly proposed model can accurately predict the oil film characteristics of the SFDs at low Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document