Local nonlinear stores induce global modal interactions in the steady-state dynamics of a model airplane

2021 ◽  
pp. 116020
Author(s):  
Jon Dewitt E. Dalisay ◽  
Keegan J. Moore ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis
2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Li-Qun Chen ◽  
Wen-An Jiang ◽  
Meghashyam Panyam ◽  
Mohammed F. Daqaq

The objective of this paper is twofold: first to illustrate that nonlinear modal interactions, namely, a two-to-one internal resonance energy pump, can be exploited to improve the steady-state bandwidth of vibratory energy harvesters; and, second, to investigate the influence of key system’s parameters on the steady-state bandwidth in the presence of the internal resonance. To achieve this objective, an L-shaped piezoelectric cantilevered harvester augmented with frequency tuning magnets is considered. The distance between the magnets is adjusted such that the second modal frequency of the structure is nearly twice its first modal frequency. This facilitates a nonlinear energy exchange between these two commensurate modes resulting in large-amplitude responses over a wider range of frequencies. The harvester is then subjected to a harmonic excitation with a frequency close to the first modal frequency, and the voltage–frequency response curves are generated. Results clearly illustrate an improved bandwidth and output voltage over a case which does not involve an internal resonance. A nonlinear model of the harvester is developed and validated against experimental findings. An approximate analytical solution of the model is obtained using perturbation methods and utilized to draw several conclusions regarding the influence of key design parameters on the harvester’s bandwidth.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


1979 ◽  
Vol 1 (4) ◽  
pp. 13-24
Author(s):  
E. Dahi ◽  
E. Lund
Keyword(s):  

2002 ◽  
Vol 16 (2) ◽  
pp. 71-81 ◽  
Author(s):  
Caroline M. Owen ◽  
John Patterson ◽  
Richard B. Silberstein

Summary Research was undertaken to determine whether olfactory stimulation can alter steady-state visual evoked potential (SSVEP) topography. Odor-air and air-only stimuli were used to determine whether the SSVEP would be altered when odor was present. Comparisons were also made of the topographic activation associated with air and odor stimulation, with the view toward determining whether the revealed topographic activity would differentiate levels of olfactory sensitivity by clearly identifying supra- and subthreshold odor responses. Using a continuous respiration olfactometer (CRO) to precisely deliver an odor or air stimulus synchronously with the natural respiration, air or odor (n-butanol) was randomly delivered into the inspiratory airstream during the simultaneous recording of SSVEPs and subjective behavioral responses. Subjects were placed in groups based on subjective odor detection response: “yes” and “no” detection groups. In comparison to air, SSVEP topography revealed cortical changes in response to odor stimulation for both response groups, with topographic changes evident for those unable to perceive the odor, showing the presence of a subconscious physiological odor detection response. Differences in regional SSVEP topography were shown for those who reported smelling the odor compared with those who remained unaware of the odor. These changes revealed olfactory modulation of SSVEP topography related to odor awareness and sensitivity and therefore odor concentration relative to thresholds.


Sign in / Sign up

Export Citation Format

Share Document