Design of dynamic absorbers to control the flexural resonant vibration of structures characterized by multiple natural modes

2021 ◽  
Vol 513 ◽  
pp. 116415
Author(s):  
Hangxing LI ◽  
Shaoqing WU ◽  
Qiang CHEN ◽  
Qingguo FEI
2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

1930 ◽  
Vol 51 (5) ◽  
pp. 769-776 ◽  
Author(s):  
Max B. Lurie

Under conditions closely simulating the natural modes of tuberculous infection in man normal guinea pigs have acquired tuberculosis by being exposed under two degrees of crowding to tuberculous cage mates in ordinary cages, where the food became soiled with excreta, bearing tubercle bacilli, and in special cages, with wire-mesh floors, where this source of infection was almost entirely eliminated. Guinea pigs were also exposed in the same room but not in the same cage with tuberculous animals. It was found that the relative tuberculous involvement of the mesenteric and tracheobronchial nodes showed a gradation of change from an almost completely alimentary infection to a completely respiratory infection. The disease involved the mesenteric nodes predominantly in the crowded ordinary cages, with much less or no affection of the tracheobronchial nodes. It was similarly, but less markedly, enteric in origin in the less crowded ordinary cages, the mesenteric nodes again being larger than the tracheobronchial nodes, but the difference in size was not so great. In the more crowded special cages the relative affection of these two groups of nodes alternated, so that in some the mesenteric, in some the tracheobronchial nodes were more extensively tuberculous. A disease characterized by less or no affection of the mesenteric nodes and by extensive lesions of the tracheobronchial nodes was seen in the less crowded special cages. Finally there was a massive tuberculosis of the tracheobronchial nodes with usually no affection of the mesenteric nodes in the frankly air-borne tuberculosis acquired by guinea pigs exposed in the same room but not to tuberculous cage mates. This gradation in the rô1e played by the enteric and respiratory routes of infection, as first the one and then the other becomes the more frequent channel of entrance for tuberculosis, would indicate that the penetration of tubercle bacilli by the one portal of entry inhibits the engrafting of tuberculosis in the tissues by way of the other portal of entry. It is apparent that in the special cages the opportunities for inhaling tubercle bacilli are at most equal to if not much less than in the ordinary cages; for in the latter dust from the bedding, laden with tubercle bacilli, is stirred up almost constantly by the animals, whereas in the special cages there is no bedding at all, and therefore, presumably, no more tubercle bacilli in the air than may occur in any part of the room. Nevertheless the route of infection was predominantly the respiratory tract in the special cages, especially in the less crowded, apparently because the enteric route had been largely eliminated. The greater predominance of the respiratory route amongst guinea pigs that acquired tuberculosis in the less crowded ordinary cages as compared to the lesser significance of this route in the more crowded ordinary cages would point in the same direction. These observations are in harmony with our knowledge that tuberculosis once implanted in an organism confers a certain degree of immunity to the disease. It is noteworthy that in a study of human autopsy material Opie (3) has found that when healed lesions are present in the mesentery focal tuberculosis in the lungs is seldom found, and that when first infection occurs by way of the lungs it tends to prevent the engrafting of the disease by way of the intestinal tract.


Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on its symmetrical or antisymmetrical property about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


Author(s):  
Ahmet Kahraman

Abstract In this paper, the dynamic behavior of a multi-mesh helical gear train is studied. The gear train consists of three helical gears, with one of the gears in mesh with the other two. An 18-degree-of-freedom dynamic model which includes transverse, torsional, axial and rotational (rocking) motions of the flexibly mounted gears is developed. Two different loading conditions are identified. For case I, the system is driven by the gear in the middle, and for case II, the system is driven by one of the gears at either end of the gear train. Gear mesh phases under each loading condition are determined. The natural modes are predicted, and effects of the helix angle and the loading condition on the natural modes are explained. The forced response, which includes dynamic mesh and bearing forces, due to the static transmission error excitation is found. Effects of loading conditions and asymmetric positioning on the response are also explored. The results suggest that the dynamic forces are lower if the number of teeth of the gear in the middle is (i) an odd number for case I type loading, and (ii) an even number for case II type loading.


Author(s):  
A. A. N. Al-jawi ◽  
A. G. Ulsoy ◽  
Christophe Pierre

Abstract An investigation of the localization phenomenon in band/wheel systems is presented. The effects of tension disorder, interspan coupling, and translation speed on the confinement of the natural modes of free vibration are investigated both theoretically and experimentally. Two models of the band/wheel system dynamics are discussed; a simple model proposed by the authors [1] and a more complete model originally proposed by Wang and Mote [9]. The results obtained using the simple interspan coupling model reveal phenomena (i.e., eigenvalue crossings and veerings and associated mode localization) that are qualitatively similar to those featured by the more complex model of interspan coupling, thereby confirming the usefulness of the simple coupling model. The analytical predictions of the two models are validated by an experiment. A very good agreement between the experimental results and the theoretical ones for the simple model is observed. While both the experimental observations and the theoretical predictions show that a beating phenomenon takes place for ordered stationary and axially moving beams, beating is destroyed (indicating the occurrence of localization) when any small tension disorder is introduced especially for small interspan coupling (i.e., when localization is strongest).


Author(s):  
S. N. Das ◽  
Kachita Kohli ◽  
Ayush Kumar ◽  
G. R. Sabareesh

Abstract Vibration attenuation is an important factor while designing rotating machinery since frequency lying in the range corresponding to natural modes of structures can result in resonance and ultimately failure. Damping dissipates energy in the system, which reduces the vibration level. The mitigation of vibrations can be achieved by designing the base frame with periodic air holes. The periodicity in air holes result in vibration attenuation by providing a stop band. A finite element-based approach is developed to predict the modal and frequency response. The analysis is carried out with different shapes of periodic cavities in order to study the effectiveness of periodic stop bands in attenuating vibrations. The amount of mass removed due to the periodic cavities is kept constant. It is seen that better attenuation is obtained in case of periodic cavities compared to a uniform base frame. Among the different geometries tested, rectangular cavities showed better results than circular and square cavities. As a result, it is seen that waves propagate along periodic cells only within specific frequency bands called the “Pass bands”, while these waves are completely blocked within other frequency bands called the “Stopbands”. The air cavities filter structural vibrations in certain frequency bands resulting in effective attenuation.


Author(s):  
Abdelmadjid Tadjadit ◽  
Boualem Tiliouine

Analytical expressions for the determination of hydro-seismic forces acting on a rigid dam with irregular upstream face geometry in presence of a compressible viscous fluid are derived through a linear combination of the natural modes of water in the reservoir based on a boundary method making use of complete sets of complex T-functions.Analytical expressions for the determination of hydro-seismic forces acting on a rigid dam with irregular upstream face geometry in presence of a compressible viscous fluid are derived through a linear combination of the natural modes of water in the reservoir based on a boundary method making use of complete sets of complex T-functions. The formulas obtained for distributions of both shear forces and overturning moments are simple, computationally effective and useful for the preliminary design of dams. They show clearly the separate and combined effects of compressibility and viscosity of water. They also have the advantage of being able to cover a wide range of excitation frequencies even beyond the cut-off frequencies of the natural modes of the reservoir. Key results obtained using the proposed analytical expressions of the hydrodynamic forces are validated using numerical and experimental solutions published for some particular cases available in the specialized literature.


Sign in / Sign up

Export Citation Format

Share Document