Soil compaction due to agricultural machinery impact

2022 ◽  
Vol 100 ◽  
pp. 51-60
Author(s):  
Zoran I. Mileusnić ◽  
Elmira Saljnikov ◽  
Rade L. Radojević ◽  
Dragan V. Petrović
Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 292 ◽  
Author(s):  
Katja Augustin ◽  
Michael Kuhwald ◽  
Joachim Brunotte ◽  
Rainer Duttmann

Avoiding soil compaction is one of the objectives to ensure sustainable agriculture. Subsoil compaction in particular can be irreversible. Frequent passages by (increasingly heavy) agricultural machinery are one trigger for compaction. The aim of this work is to map and analyze the extent of traffic intensity over four years. The analysis is made for complete seasons and individual operations. The traffic intensity is distinguished into areas with more than five wheel passes, more than 5 Mg and 3 Mg wheel load. From 2014 to 2018, 63 work processes on a field were recorded and the wheel load and wheel passes were modeled spatially with FiTraM. Between 82% (winter wheat) and 100% (sugar beet) of the total infield area is trafficked during a season. The sugar beet season has the highest intensities. High intensities of more than five wheel passes and more than 5 Mg wheel load occur mainly during harvests in the headland. At wheel load ≥3 Mg, soil tillage also stresses the headland. In summary, no work process stays below one of the upper thresholds set. Based on the results, the importance of a soil-conserving management becomes obvious in order to secure the soil for agriculture in a sustainable way.


2021 ◽  
Vol 24 (4) ◽  
pp. 181-186
Author(s):  
Gholamhussein Shahgholi ◽  
Abdolmajid Moinfar

Abstract The advancement of technology and increasing use of mechanization in agriculture, as well as increasing size of agricultural machinery for farm capacity improvement, have led to soil compaction. In developed countries, various reports of the soil compaction impacts on the reduction of agricultural products have been provided. In developing countries, soil compaction represents a less-known issue and a its destructive nature in agriculture has not been sufficiently addressed. Furthermore, in developed countries, the soil is rich in organic matter due to conservation tillage; however, in Iran, conservation tillage is not possible to perform because of traditional agriculture and using old agricultural machinery. Therefore, plant residues are either removed from fields, or burned. However, sufficient content of organic matter in field can contribute to soil compaction mitigation. The aim of this study was to investigate the effect of percentage of crop residues and their size on soil compaction at different soil moisture contents. For these purposes, five different soil moisture contents (8, 10, 12, 14 and 16% based on dry soil weight) and 4 residue rates at 3 fragmentation sizes were observed in terms of soil compaction. At all different soil moisture contents and residue sizes, with increasing percentage of added straw to the soil, the soil displacement increased. Moreover, as the straw size increased, the initial displacement during compression decreased, e.g., the maximum displacements for straw percentage of 12% and soil moisture of 8% were 64, 62 and 60 mm considering the straw sizes of 1, 2.5 and 5 cm, respectively. With high residue percentage, the final soil density and soil compaction were lower due to the low specific density of straw relative to soil. Furthermore, with high percentage of straw, more deformations and displacements were occurred in the mixture due to large deformation of straws. The density changes of soil-straw mixture were more significant at high residue percentages.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aline Barbosa Arruda ◽  
Rodrigo Fernandes de Souza ◽  
Gustavo Henrique Mendes Brito ◽  
Jadson Belém de Moura ◽  
Manoel Henrique Reis de Oliveira ◽  
...  

AbstractSugarcane is a very important economic crop that relies heavily on agricultural machinery, which contributes to soil compaction and a consequent decline in productivity. Subsoiling operation reduces the problems caused by compression; however, it is necessary to know its location and intensity. Accordingly, the aim of this work is to present a compression diagnostic method based on soil resistance to penetration as the parameter that indicates need for intervention in the subsoil. Measurements of penetration resistance was carried out in areas of sugarcane, located in the municipalities of Goianésia, Barro Alto and Santa Isabel, in the Brazilian state of Goiás. The Falker penetrometer (PLG 1020) was used, adjusted to a maximum depth of 40 cm and adopted as a critical resistance value of 4.0 MPa. The data were interpolated using kriging and adjusted in AutoCAD 2013 (Autodesk). The methodology proved effective in areas of compacted soil, and the surface layer had less resistance. The reduction in soil preparation was 96.54% and when considering the topographic adjustments, the reduction was 74.07%, showing the viability and importance of the diagnosis to show the proper management.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


Author(s):  
Salavat Mudarisov ◽  
Ildar Farkhutdinov ◽  
Airat Mukhametdinov ◽  
Raushan Aminov ◽  
Rustam Bagautdinov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document