P71.05 Use of a Multiscale NSCLC Tumor Heterogeneity Model to Predict Tumor Growth Under Gefitinib

2021 ◽  
Vol 16 (10) ◽  
pp. S1220-S1221
Author(s):  
A. L'Hostis ◽  
J. Palgen ◽  
N. Ceres ◽  
E. Peyronnet ◽  
A. Perrillat-Mercerot ◽  
...  
Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. SCI-37-SCI-37
Author(s):  
Christina Curtis

Abstract Cancer results from the acquisition of somatic alterations in an evolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. For decades, tumor progression has been described as a gradual stepwise process, and it is through this lens that the underlying mechanisms have been interpreted and therapeutic strategies have been developed. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Cancer genome sequencing has thus yielded unprecedented insights into intra-tumor heterogeneity (ITH) and these data enable the inference of tumor dynamics using population genetics techniques. The application of such approaches suggests that tumor evolution is not necessarily gradual, but rather can be punctuated, resulting in revision of the de facto sequential clonal expansion model. For example, we previously described a Big Bang model of human colorectal tumor growth, wherein after transformation the neoplasm grows predominantly as a single terminal expansion in the absence of stringent selection, compatible with effectively neutral evolution1. In the Big Bang model, the timing of a mutation is the fundamental determinant of its frequency in the final tumor such that all major clones persist during growth and most detectable intra-tumor heterogeneity (ITH) occurs early. By analyzing multi-region and single gland genomic profiles in colorectal adenomas and carcinomas within a spatial agent-based tumor growth model and Bayesian statistical inference framework, we demonstrated the early origin of ITH and verified several other predictions of the Big Bang model. This new model provides a quantitative framework for understanding tumor progression with several clinical implications. In particular, rare but potentially aggressive subclones may be undetectable, providing a rich substrate for the emergence of resistance under treatment selective pressure. These data also suggest that some tumors may be born to be bad, wherein malignant potential is specified early. While not all tumors exhibit Big Bang dynamics, effectively neutral evolution has since been reported in other tumors and hence may be relatively common. These findings emphasize the need for methods to infer the role of selection in established human tumors and the systematic evaluation of distinct modes of evolution across tumor types and disease stages. To address this need, we developed an extensible population genetics framework to simulate spatial tumor growth and evaluate evidence for different evolutionary modes based on patterns of genetic variation derived from multi-region sequencing (MRS) data2. We demonstrate that while it is feasible to distinguish strong positive selection from neutral tumor evolution, weak selection and neutral evolution were indistinguishable in current data. Building on these findings, we developed a classifier that exploits novel measures of ITH and applied this to MRS data from diverse tumor types, revealing different evolutionary modes amongst treatment naïve tumors. To better understand evolutionary tempos during disease progression, we further characterized longitudinally sampled specimens. These findings have implications for forecasting tumor evolution and designing more effective treatment strategies. 1. Sottoriva A, Kang H, Ma Z, et al. A Big Bang model of human colorectal tumor growth. Nature Genetics. 2015;47:209-16. 2. Sun R, Hu Z, Sottoriva A, et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nature Genetics. 2017;49:1015-24. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Andrea Comba ◽  
Syed M. Faisal ◽  
Maria Luisa Varela ◽  
Todd Hollon ◽  
Wajd N. Al-Holou ◽  
...  

Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii10-ii10
Author(s):  
Marat Pavlyukov ◽  
Tatyana Larionova ◽  
Soniya Bastola ◽  
Victoria Shender ◽  
Ichiro Nakano ◽  
...  

Abstract Glioblastoma (GBM) is an extremely heterogeneous tumor and its different regions are populated with phenotypically distinct types of cancer cells. However, it is still unclear how multiple GBM populations arise from the originally homogenous group of tumor precursor cells. Here we showed that GBM cells from the core and edge of the tumor have different composition of ribosomes due to the alternative RNA splicing of multiple ribosomal genes with highest differences observed for RPL22L1. We found that cells at the edge of the tumor express classical isoform of RPL22L1 (RPL22L1a) while core cells have a novel RPL22L1b isoform. RPL22L1b appears due to low pH condition at the core of the tumor. It allows cells to survive during acidosis, promotes more aggressive phenotype in vivo and correlate with worse patient outcome. Mechanistically, RPL22L1b binds to lncRNA MALAT1 in the nucleus and induces its degradation enhancing stemness of GBM cells. On the other hand, RPL22L1a interacts with ribosomes in cytoplasm and upregulates p53 translation favoring less aggressive edge phenotype of GBM. The splicing switch between RPL22L1 isoforms is regulated by SRSF4 proteins. We identified a small molecule compound that inhibits SRSF4 and impairs splicing of RPL22L1, inducing apoptosis of GBM cells and decreasing tumor growth in vivo. Altogether, our data unraveled the mechanism by which less aggressive edge-like GBM cells acquire more malignant core-like phenotype during tumor growth. It may also explain discrepancies between proteome and transcriptome of GBM cell populations. Targeting this pathway may help to decrease tumor heterogeneity and eliminate therapy resistant cells at the tumor core. Work was supported by the Russian Science Foundation grant 19-44-02027.


2005 ◽  
Vol 173 (4S) ◽  
pp. 178-179
Author(s):  
Tetsuo Ogushi ◽  
Takahashi Satoru ◽  
Takumi Takeuchi ◽  
Tetsuya Fujimura ◽  
Tomohiko Urano ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 263-263
Author(s):  
Christoph Kündig ◽  
Sylvain M. Cloutier ◽  
Steve Aellen ◽  
Loyse M. Felber ◽  
Jair R. Chagas ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 143-143
Author(s):  
Aubie Shaw ◽  
Jerry Gipp ◽  
Wade Bushman

Sign in / Sign up

Export Citation Format

Share Document