TiOF2/TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity

2019 ◽  
Vol 96 ◽  
pp. 214-222 ◽  
Author(s):  
Zhendong Liu ◽  
Xiaona Liu ◽  
Qifang Lu ◽  
Qinyu Wang ◽  
Zhen Ma
Author(s):  
Xuquan Wang ◽  
Yang Li ◽  
Fei Wang ◽  
Baoqiang Xu ◽  
Bin Yang ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
pp. 129-137
Author(s):  
Yayuk Astuti ◽  
Rizka Andianingrum ◽  
Abdul Haris ◽  
Adi Darmawan ◽  

AbstractSynthesis of bismuth oxide synthesis through the precipitation method using H2C2O4 and Na2CO3 precipitating agents, identification of physicochemical properties and its photocatalysis activity for methyl orange degradation were conducted. The bismuth oxide synthesis was undertaken by dissolving Bi(NO3)3.5H2O in HNO3, then added precipitating agents to form precipitate. The results showed that bismuth oxide produced by H2C2O4 precipitating agent was a yellow powder containing a mixture of α-Bi2O3 (monoclinic) and β-Bi2O3 (tetragonal), porous with size of 28-85 μm. Meanwhile, the use of Na2CO3 as precipitating agent resulted in bismuth oxide consisting of α-Bi2O3 and β-Bi2O3 and Bi2O4, irregular shape without pore being 40-115 μm in size. Bismuth oxide synthesized with H2C2O4 precipitating agent showed higher photocatalytic activity compared to bismuth oxide synthesized using Na2CO3 on degrading methyl orange dye with degradation rate constants of 2.35x10-5 s-1 for H2C2O4 and 1.81x10-5 s-1 for Na2CO3.


2016 ◽  
Vol 5 (4) ◽  
pp. 298-307 ◽  
Author(s):  
Hongfang Shen ◽  
Youjun Lu ◽  
Yanmin Wang ◽  
Zhidong Pan ◽  
Guozhong Cao ◽  
...  

2013 ◽  
Vol 110 ◽  
pp. 94-97 ◽  
Author(s):  
Jayesh D. Patel ◽  
Frej Mighri ◽  
Abdellah Ajji ◽  
Tapas K. Chaudhuri

2013 ◽  
Vol 16 (6) ◽  
pp. 1613-1618 ◽  
Author(s):  
Ximing Luo ◽  
Fangfang Liu ◽  
Xiaohui Li ◽  
Hongtao Gao ◽  
Guangjun Liu

2007 ◽  
Vol 561-565 ◽  
pp. 495-498 ◽  
Author(s):  
Jin Liang Huang ◽  
Xiao Wang ◽  
Liu Shuan Yang ◽  
Chun Wei Cui ◽  
Xing Hua Yang

The cubic pyrochlore phase Bi1.5ZnNb1.5O7 nanopowder was successfully synthesized by the hydrothermal method (HTM) from the starting materials: Bi(NO3)3·5H2O, ZnO, Nb2O5 and the mineralizer: KOH. The XRD patterns prove that the cubic pyrochlore phase Bi1.5ZnNb1.5O7 nanopowder can be obtained by HTM, and TEM photographs show that the powders present the regularly granular shape, when the hydrothermal reactions were conducted at synthesis temperatures 140~220°C and reaction time for 6~48h. The crystalline sizes of the powders were calculated by the Scherrer equation to be about 43~49nm. The crystalline sizes decreased both with the increase in synthesis temperature and the prolonged reaction time until they reached to the minimum size about 43nm at 220°C for 24h.However, they tended to increase when the reaction time was above 24h.


2020 ◽  
Vol 20 (6) ◽  
pp. 1392
Author(s):  
Leny Yuliati ◽  
Mohd Hayrie Mohd Hatta ◽  
Siew Ling Lee ◽  
Hendrik Oktendy Lintang

In this work, the crystalline carbon nitride photocatalysts were synthesized by an ionothermal technique with varied synthesis temperature of 500, 550, and 600 °C, and synthesis time of 2, 4, and 6 h. Fourier transform infrared spectra showed the successful formation of the prepared carbon nitrides from their characteristic vibration peaks. X-ray diffraction patterns suggested that the same phase of poly(triazine imide) and heptazine could be observed, but with different crystallinity. The optical properties showed that different temperatures and synthesis time resulted in the different band gap energy (2.72–3.02 eV) as well as the specific surface area (24–73 m2 g–1). The transmission electron microscopy image revealed that the crystalline carbon nitride has a near-hexagonal prismatic crystallite size of about 50 nm. Analysis by high-performance liquid chromatography showed that the best photocatalytic activity for phenol degradation under solar light simulator was obtained on the crystalline carbon nitride prepared at the 550 °C for 4 h, which would be due to the high crystallinity, suitable low band gap energy (2.82 eV), and large specific surface area (73 m2 g–1). Controlling both the temperature and synthesis time is shown to be important to obtain the best physicochemical properties leading to high activity.


Sign in / Sign up

Export Citation Format

Share Document