scholarly journals Design, synthesis, and validation of an in vitro platform peptide-whole cell screening assay using MTT reagent

2017 ◽  
Vol 11 (3) ◽  
pp. 487-496
Author(s):  
Sahar Ahmed ◽  
Kamaljit Kaur
Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 48 ◽  
Author(s):  
Jennifer M. Colquhoun ◽  
Lisha Ha ◽  
Andrew Beckley ◽  
Brinkley Meyers ◽  
Daniel P. Flaherty ◽  
...  

Staphylococcus aureus RnpA is thought to be a unique dual functional antimicrobial target that is required for two essential cellular processes, precursor tRNA processing and messenger RNA degradation. Herein, we used a previously described whole cell-based mupirocin synergy assay to screen members of a 53,000 compound small molecule diversity library and simultaneously enrich for agents with cellular RnpA inhibitory activity. A medicinal chemistry-based campaign was launched to generate a preliminary structure activity relationship and guide early optimization of two novel chemical classes of RnpA inhibitors identified, phenylcarbamoyl cyclic thiophene and piperidinecarboxamide. Representatives of each chemical class displayed potent anti-staphylococcal activity, limited the protein’s in vitro ptRNA processing and mRNA degradation activities, and exhibited favorable therapeutic indexes. The most potent piperidinecarboxamide RnpA inhibitor, JC2, displayed inhibition of cellular RnpA mRNA turnover, RnpA-depletion strain hypersusceptibility, and exhibited antimicrobial efficacy in a wax worm model of S. aureus infection. Taken together, these results establish that the whole cell screening assay used is amenable to identifying small molecule RnpA inhibitors within large chemical libraries and that the chemical classes identified here may represent progenitors of new classes of antimicrobials that target RnpA.


2021 ◽  
Author(s):  
Spyridon Bousis ◽  
Steffen Winkler ◽  
Jörg Haupenthal ◽  
Francesco Fulco ◽  
Eleonora Diamanti ◽  
...  

Herein, we report a novel whole-cell screening assay using Lactobacillus casei as model microorganism to identify inhibitors of energy-coupling factor (ECF) transporters. This promising and underexplored target may have important pharmacological potential through modulation of vitamin homeostasis in bacteria and, importantly, it is absent in humans. The assay represents an alternative, cost-effective and fast solution to demonstrate the direct involvement of these membrane transporters in a native biological environment rather than using a low-throughput in vitro assay employing reconstituted proteins in a membrane bilayer system. Based on this new whole-cell screening approach, we demonstrated the optimization of a weak hit compound (2) into a small molecule (3) with improved in vitro and whole-cell activities. This study opens the possibility to quickly identify novel inhibitors of ECF transporters and optimize them based on structure–activity relationships.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506b-506
Author(s):  
Carol D. Robacker ◽  
S.K. Braman

Azalea lace bug (Stephanitis pyrioides) is the most serious pest on azalea. Results of laboratory bioassays and field evaluations of 17 deciduous azalea taxa have identified three resistant taxa: R. canescens, R. periclymenoides, and R. prunifolium. Highly susceptible taxa are `Buttercup', `My Mary', R. oblongifolium, and the evergreen cultivar `Delaware Valley White'. To determine whether in vitro techniques would have potential value in screening or selecting for resistance, or for the identification of morphological or chemical factors related to resistance, an in-vitro screening assay was developed. In-vitro shoot proliferation was obtained using the medium and procedures of Economou and Read (1984). Shoots used in the bioassays were grown in culture tubes. Two assays were developed: one for nymphs and one for adult lace bugs. To assay for resistance to nymphs, `Delaware Valley White' leaves containing lace bug eggs were disinfested with 70% alcohol and 20% commercial bleach, and incubated in sterile petri plates with moistened filter paper until the nymphs hatched. Five nymphs were placed in each culture tube, and cultures were incubated for about 2 weeks, or until adults were observed. To assay for resistance to adults, five female lace bugs were placed in each culture tube and allowed to feed for 5 days. Data collected on survival and leaf damage was generally supportive of laboratory bioassays and field results. Adult lace bugs had a low rate of survival on resistant taxa. Survival of nymphs was somewhat reduced on resistant taxa.


2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


2019 ◽  
Vol 15 (6) ◽  
pp. 602-623 ◽  
Author(s):  
Ahmed M. Abdelaziz ◽  
Sarah Diab ◽  
Saiful Islam ◽  
Sunita K.C. Basnet ◽  
Benjamin Noll ◽  
...  

Background:Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer.Methods:A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined.Results:These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability.Conclusion:This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.


Author(s):  
Reema Abu Khalaf ◽  
Shorooq Alqazaqi ◽  
Maram Aburezeq ◽  
Dima Sabbah ◽  
Ghadeer Albadawi ◽  
...  

Background: Diabetes mellitus is a chronic metabolic disorder, characterized by hyperglycemia over a prolonged period, disturbance of fat, protein and carbohydrate metabolism, resulting from defective insulin secretion, insulin action or both. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are relatively a new class of oral hypoglycemic agents that reduces the deterioration of gut-derived endogenous incretin hormones that are secreted in response to food ingestion to stimulate the secretion of insulin from beta cells of pancreas. Objective: In this study, synthesis, characterization, and biological assessment of twelve novel phenanthridine sulfonamide derivatives 3a-3l as potential DPP-IV inhibitors was carried out. The target compounds were docked to study the molecular interactions and binding affinities against DPP-IV enzyme. Methods: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and MS. Quantum-polarized ligand docking (QPLD) was also performed. Results: In vitro biological evaluation of compounds 3a-3l reveals comparable DPP-IV inhibitory activities ranging from 10%-46% at 100 µM concentration, where compound 3d harboring ortho-fluoro moiety exhibited the highest inhibitory activity. QPLD study shows that compounds 3a-3l accommodate DPP-IV binding site and form H-bonding with the R125, E205, E206, S209, F357, R358, K554, W629, S630, Y631, Y662, R669 and Y752 backbones. Conclusion: In conclusion, phenanthridine sulfonamides could serve as potential DPP-IV inhibitors that require further structural optimization in order to enhance their inhibitory activity.


Sign in / Sign up

Export Citation Format

Share Document