scholarly journals Cost-effectiveness analysis of Ex-Vivo expanded Autologous Corneal Epithelial Cells containing Stem Cells to repair the damaged ocular surface in Patients with moderate to severe Limbal Stem Cell deficiency due to Ocular Burns in the UK

2015 ◽  
Vol 18 (3) ◽  
pp. A298
Author(s):  
R. Fordham ◽  
G. Ciminata ◽  
A. Madoni ◽  
T. Magni ◽  
D. Ardigò ◽  
...  
Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 369
Author(s):  
Sang Beom Han ◽  
Farah Nur Ilyana Mohd Ibrahim ◽  
Yu-Chi Liu ◽  
Jodhbir S. Mehta

Background and objectives: the aim of this study was to analyze the efficacy of a modified “amnion-assisted conjunctival epithelial redirection (ACER)” technique for the treatment of partial limbal stem cell deficiency (LSCD). Materials and methods: the medical records of three patients with partial LSCD who underwent corneal surface reconstruction with modified ACER following superficial keratectomy were retrospectively studied. Briefly, in this technique, an inner amniotic membrane (AM) layer was applied on the corneal surface to promote corneal re-epithelialization. The outer AM layer was applied as a barrier to prevent the invasion of conjunctival epithelial cells into the cornea before the corneal surface was completely covered by corneal epithelial cells derived from the remaining intact limbal stem cells. Results: in all three cases, the outer AM layer successfully kept the conjunctival epithelium away from the corneal surface and prevented an admixture of conjunctival epithelial cells with corneal epithelial cells. In all three patients, the cornea was completely re-epithelized with epithelial cells derived from the remaining healthy limbal stem cells, and a clear visual axis was maintained without recurrence for a mean follow-up period of 37.3 ± 8.6 months. Conclusions: the preliminary results suggest that modified ACER appears to be a viable option for patients with partial LSCD.


2014 ◽  
Vol 998-999 ◽  
pp. 312-315
Author(s):  
Fan Wang ◽  
Bo Ren ◽  
Yi Ning Yan

Purpose: The adult corneal epithelium is maintained by a population of limbal stem cells (LSCs), transmembrane protein prominin, regarded as stem cell marker was investigated on mouse corneal tissue, to study weather contains CD133-expressing cells and their distribution. Methods: Enucleated mouse eyes were embedded in OCT and cryosections were performed for mmunohistochemical studies using the avidin-biotin-peroxidase complex (ABC) procedure. Meanwhile, dissected mouse corneas were analyzed by westernblot. Results: In the adult mouse, 13A4 immunoreactivity was detected at the apical side of superficial corneal epithelium, including the limbus region, but not by stroma and endothelium. 115 KDa protein was approved in corneal tissue by Westernblot. Conclusions: The stem cell activity does not occur along the limbus but presumably presented by small portion of corneal epithelial cells which may hold a similar properties of stem cells.


2019 ◽  
Vol 12 (1) ◽  
pp. 103-111
Author(s):  
A. S. Dubovikov ◽  
I. O. Gavrilyuk ◽  
A. N. Kulikov ◽  
S. V. Churashov ◽  
V. F. Chernysh ◽  
...  

The review is focused on the modern view of the etiology and pathogenesis of limbal stem cells deficiency. The history of development of tissue and ex-vivo transplantation of limbal epithelial stem cells is presented. Certain promising directions of the treatment of patients with limbal stem cells deficiency are presented.


2021 ◽  
Vol 14 (2) ◽  
pp. 179-185
Author(s):  
Guo-Hu Di ◽  
◽  
Jing Xu ◽  
Chao-Qun Yu ◽  
Qi-Long Cao ◽  
...  

AIM: To explore the secretome efficacy in tumor necrosis factor (TNF)-α stimulated mouse mesenchymal stem cells (MSCs) in a murine model of corneal limbal alkali injury. METHODS: Corneal limbal stem cell deficiency (LSCD) was created in the eyes of male C57 mice. Concentrated conditioned medium from TNF-α stimulated MSCs (MSC-CMT) was applied topically for 4wk, with basal medium and conditioned medium from MSCs as controls. Corneal opacification, corneal inflammatory response, and corneal neovascularization (NV) were evaluated. Corneal epithelial cell apoptosis, corneal conjunctivation, and inflammatory cell infiltration were assessed with TUNEL staining, CK3 and Muc-5AC immunostaining, and CD11b immunofluorescence staining, respectively. The effect of TSG-6 was further evaluated by knockdown with short hairpin RNA (shRNA). RESULTS: Compared to the controls, topical administration of MSC-CMT significantly ameliorated the clinical symptoms of alkali-induced LSCD, with restrained corneal NV, reduced corneal epithelial cell apoptosis, and inhibition of corneal conjunctivation. In addition, MSC-CMT treatment significantly reduced CD11b+ inflammatory cell infiltration, and inhibited the expression of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6). Furthermore, the promotion of corneal epithelial reconstruction by MSC-CMT was largely abolished by TSG-6 knockdown. CONCLUSION: Our study provides evidence that MSC-CMT enhances the alleviation of corneal alkali injuries, partially through TSG-6-mediated anti-inflammatory protective mechanisms. MSC-CMT may serve as a potential strategy for treating corneal disorders.


2011 ◽  
Vol 36 (12) ◽  
pp. 1098-1107 ◽  
Author(s):  
Tamar Kadar ◽  
Vered Horwitz ◽  
Rita Sahar ◽  
Maayan Cohen ◽  
Liat Cohen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document