Resonant Voice: Perceptual and Acoustic Analysis After an Intensive Lessac Kinesensic Training Workshop

Author(s):  
Marilene Grama ◽  
Viviane Barrichelo-Lindström ◽  
Marina Englert ◽  
Deborah Kinghorn ◽  
Mara Behlau
2020 ◽  
Vol 63 (4) ◽  
pp. 1018-1032
Author(s):  
Chia-Hsin Wu ◽  
Roger W. Chan

Purpose Semi-occluded vocal tract (SOVT) exercises with tubes or straws have been widely used for a variety of voice disorders. Yet, the effects of longer periods of SOVT exercises (lasting for weeks) on the aging voice are not well understood. This study investigated the effects of a 6-week straw phonation in water (SPW) exercise program. Method Thirty-seven elderly subjects with self-perceived voice problems were assigned into two groups: (a) SPW exercises with six weekly sessions and home practice (experimental group) and (b) vocal hygiene education (control group). Before and after intervention (2 weeks after the completion of the exercise program), acoustic analysis, auditory–perceptual evaluation, and self-assessment of vocal impairment were conducted. Results Analysis of covariance revealed significant differences between the two groups in smoothed cepstral peak prominence measures, harmonics-to-noise ratio, the auditory–perceptual parameter of breathiness, and Voice Handicap Index-10 scores postintervention. No significant differences between the two groups were found for other measures. Conclusions Our results supported the positive effects of SOVT exercises for the aging voice, with a 6-week SPW exercise program being a clinical option. Future studies should involve long-term follow-up and additional outcome measures to better understand the efficacy of SOVT exercises, particularly SPW exercises, for the aging voice.


2020 ◽  
Vol 63 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Panying Rong

Purpose The purpose of this article was to validate a novel acoustic analysis of oral diadochokinesis (DDK) in assessing bulbar motor involvement in amyotrophic lateral sclerosis (ALS). Method An automated acoustic DDK analysis was developed, which filtered out the voice features and extracted the envelope of the acoustic waveform reflecting the temporal pattern of syllable repetitions during an oral DDK task (i.e., repetitions of /tɑ/ at the maximum rate on 1 breath). Cycle-to-cycle temporal variability (cTV) of envelope fluctuations and syllable repetition rate (sylRate) were derived from the envelope and validated against 2 kinematic measures, which are tongue movement jitter (movJitter) and alternating tongue movement rate (AMR) during the DDK task, in 16 individuals with bulbar ALS and 18 healthy controls. After the validation, cTV, sylRate, movJitter, and AMR, along with an established clinical speech measure, that is, speaking rate (SR), were compared in their ability to (a) differentiate individuals with ALS from healthy controls and (b) detect early-stage bulbar declines in ALS. Results cTV and sylRate were significantly correlated with movJitter and AMR, respectively, across individuals with ALS and healthy controls, confirming the validity of the acoustic DDK analysis in extracting the temporal DDK pattern. Among all the acoustic and kinematic DDK measures, cTV showed the highest diagnostic accuracy (i.e., 0.87) with 80% sensitivity and 94% specificity in differentiating individuals with ALS from healthy controls, which outperformed the SR measure. Moreover, cTV showed a large increase during the early disease stage, which preceded the decline of SR. Conclusions This study provided preliminary validation of a novel automated acoustic DDK analysis in extracting a useful measure, namely, cTV, for early detection of bulbar ALS. This analysis overcame a major barrier in the existing acoustic DDK analysis, which is continuous voicing between syllables that interferes with syllable structures. This approach has potential clinical applications as a novel bulbar assessment.


2014 ◽  
Vol 23 (3) ◽  
pp. 132-139 ◽  
Author(s):  
Lauren Zubow ◽  
Richard Hurtig

Children with Rett Syndrome (RS) are reported to use multiple modalities to communicate although their intentionality is often questioned (Bartolotta, Zipp, Simpkins, & Glazewski, 2011; Hetzroni & Rubin, 2006; Sigafoos et al., 2000; Sigafoos, Woodyatt, Tuckeer, Roberts-Pennell, & Pittendreigh, 2000). This paper will present results of a study analyzing the unconventional vocalizations of a child with RS. The primary research question addresses the ability of familiar and unfamiliar listeners to interpret unconventional vocalizations as “yes” or “no” responses. This paper will also address the acoustic analysis and perceptual judgments of these vocalizations. Pre-recorded isolated vocalizations of “yes” and “no” were presented to 5 listeners (mother, father, 1 unfamiliar, and 2 familiar clinicians) and the listeners were asked to rate the vocalizations as either “yes” or “no.” The ratings were compared to the original identification made by the child's mother during the face-to-face interaction from which the samples were drawn. Findings of this study suggest, in this case, the child's vocalizations were intentional and could be interpreted by familiar and unfamiliar listeners as either “yes” or “no” without contextual or visual cues. The results suggest that communication partners should be trained to attend to eye-gaze and vocalizations to ensure the child's intended choice is accurately understood.


2011 ◽  
Vol 21 (2) ◽  
pp. 44-54
Author(s):  
Kerry Callahan Mandulak

Spectral moment analysis (SMA) is an acoustic analysis tool that shows promise for enhancing our understanding of normal and disordered speech production. It can augment auditory-perceptual analysis used to investigate differences across speakers and groups and can provide unique information regarding specific aspects of the speech signal. The purpose of this paper is to illustrate the utility of SMA as a clinical measure for both clinical speech production assessment and research applications documenting speech outcome measurements. Although acoustic analysis has become more readily available and accessible, clinicians need training with, and exposure to, acoustic analysis methods in order to integrate them into traditional methods used to assess speech production.


2012 ◽  
Vol 40 (1) ◽  
pp. 25-41 ◽  
Author(s):  
H. M. R. Aboutorabi ◽  
L. Kung

Abstract REFERENCE: H. M. R. Aboutorabi and L. Kung, “Application of Coupled Structural Acoustic Analysis and Sensitivity Calculations to a Tire Noise Problem,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January – March 2012, pp. 25–41. ABSTRACT: Tire qualification for an original equipment (OE) program consists of several rounds of submissions by the tire manufacturer for evaluation by the vehicle manufacturer. Tires are evaluated both subjectively, where the tire performance is rated by an expert driver, and objectively, where sensors and testing instruments are used to measure the tire performance. At the end of each round of testing the evaluation results are shared and requirements for performance improvement for the next round are communicated with the tire manufacturer. As building and testing is both expensive and time consuming predictive modeling and simulation analysis that can be applied to the performance of the tire is of great interest and value. This paper presents an application of finite element analysis (FEA) modeling along with experimental verification to solve tire noise objections at certain frequencies raised by an original equipment manufacturer (OEM) account. Coupled structural-acoustic analysis method was used to find modal characteristics of the tire at the objectionable frequencies. Sensitivity calculations were then carried out to evaluate the strength of contribution from each tire component to the identified modes. Based on these findings changes to the construction were proposed and implemented that addressed the noise issue.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 810-815
Author(s):  
Jay C. Hardin ◽  
James E. Martin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document