Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field

2010 ◽  
Vol 98 (6-7) ◽  
pp. 299-316 ◽  
Author(s):  
Kyle Butler ◽  
Shuyang Cao ◽  
Ahsan Kareem ◽  
Yukio Tamura ◽  
Shigehira Ozono
Author(s):  
A. Naguib ◽  
L. Hudy ◽  
W. M. Humphreys

Simultaneous wall-pressure and PIV measurements are used to study the conditional flow field associated with surface-pressure generation in a separating/reattaching flow established over a fence-with-splitter-plate geometry. The conditional flow field is captured using linear and quadratic stochastic estimation based on the occurrence of positive and negative pressure events in the vicinity of the mean reattachment location. The results shed light on the dominant flow structures associated with significant wall-pressure generation. Furthermore, analysis based on the individual terms in the stochastic estimation expansion shows that both the linear and non-linear flow sources of the coherent (conditional) velocity field are equally important contributors to the generation of the conditional surface pressure.


Author(s):  
Shang Yadong ◽  
Li Peng ◽  
Su Junhu ◽  
Bao Chengjia ◽  
Wang Feixing ◽  
...  

2019 ◽  
Vol 9 (22) ◽  
pp. 4924
Author(s):  
Lee ◽  
Cheong ◽  
Kim ◽  
Kim

The high-speed train interior noise induced by the exterior flow field is one of the critical issues for product developers to consider during design. The reliable numerical prediction of noise in a passenger cabin due to exterior flow requires the decomposition of surface pressure fluctuations into the hydrodynamic (incompressible) and the acoustic (compressible) components, as well as the accurate computation of the near aeroacoustic field, since the transmission characteristics of incompressible and compressible pressure waves through the wall panel of the cabin are quite different from each other. In this paper, a systematic numerical methodology is presented to obtain separate incompressible and compressible surface pressure fields in the wavenumber–frequency and space–time domains. First, large eddy simulation techniques were employed to predict the exterior flow field, including a highly-resolved acoustic near-field, around a high-speed train running at the speed of 300 km/h in an open field. Pressure fluctuations on the train surface were then decomposed into incompressible and compressible fluctuations using the wavenumber–frequency analysis. Finally, the separated incompressible and compressible surface pressure fields were obtained from the inverse Fourier transform of the wavenumber–frequency spectrum. The current method was illustratively applied to the high-speed train HEMU-430X running at a speed of 300 km/h in an open field. The results showed that the separate incompressible and compressible surface pressure fields in the time–space domain could be obtained together with the associated aerodynamic source mechanism. The power levels due to each pressure field were also estimated, and these can be directly used for interior noise prediction.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Jeremy B. Nickol ◽  
Randall M. Mathison ◽  
Malak F. Malak ◽  
Rajiv Rana ◽  
Jong S. Liu

The flow field in axial gas turbines is driven by strong unsteady interactions between stationary and moving components. While time-averaged measurements can highlight many important flow features, developing a deeper understanding of the complicated flows present in high-speed turbomachinery requires time-accurate measurements that capture this unsteady behavior. Toward this end, time-accurate measurements are presented for a fully cooled transonic high-pressure turbine stage operating at design-corrected conditions. The turbine is run in a short-duration blowdown facility with uniform, radial, and hot streak vane-inlet temperature profiles as well as various amounts of cooling flow. High-frequency response surface pressure and heat-flux instrumentation installed in the rotating blade row, stator vane row, and stationary outer shroud provide detailed measurements of the flow behavior for this stage. Previous papers have reported the time-averaged results from this experiment, but this paper focuses on the strong unsteady phenomena that are observed. Heat-flux measurements from double-sided heat-flux gauges (HFGs) cover three spanwise locations on the blade pressure and suction surfaces. In addition, there are two instrumented blades with the cooling holes blocked to isolate the effect of just blade cooling. The stage can be run with the vane and blade cooling flow either on or off. High-frequency pressure measurements provide a picture of the unsteady aerodynamics on the vane and blade airfoil surfaces, as well as inside the serpentine coolant supply passages of the blade. A time-accurate computational fluid dynamics (CFD) simulation is also run to predict the blade surface pressure and heat-flux, and comparisons between prediction and measurement are given. It is found that unsteady variations in heat-flux and pressure are stronger at low to midspan and weaker at high span, likely due to the impact of secondary flows such as the tip leakage flow. Away from the tip, it is seen that the unsteady fluctuations in pressure and heat-flux are mostly in phase with each other on the suction side, but there is some deviation on the pressure side. The flow field is ultimately shown to be highly three-dimensional, as the movement of high heat transfer regions can be traced in both the chord and spanwise directions. These measurements provide a unique picture of the unsteady flow physics of a rotating turbine, and efforts to better understand and model these time-varying flows have the potential to change the way we think about even the time-averaged flow characteristics.


Author(s):  
Stephen J. Wilkins ◽  
Joseph W. Hall

The unsteady flow field produced by a tandem cylinder system with the upstream cylinder yawed to the mean flow direction is investigated for upstream cylinder yaw angles from α = 60° to α = 90°. Multi-point fluctuating surface pressure and hotwire measurements were conducted at various spanwise positions on both the upstream and downstream cylinders. The results indicate that yawing the front cylinder to the mean flow direction causes the pressure and velocity spectra on the upstream and downstream cylinders to become more broadband than for a regular tandem cylinder system, and reduces the magnitude of the peak associated with the vortex-shedding. However, span-wise correlation and coherence measurements indicate that the vortex-shedding is still present and was being obscured by the enhanced three-dimensionality that the upstream yawed cylinder caused and was still present and correlated from front to back, at least for the larger yaw angles investigated. When the cylinder was yawed to α = 60°, the pressure fluctuations became extremely broadband and exhibited shorter spanwise correlation.


2014 ◽  
Vol 494-495 ◽  
pp. 138-141
Author(s):  
Shan Ling Han ◽  
Zhi Yong Li ◽  
Jin Bin Li ◽  
Ru Xing Yu

The aerodynamic characteristics of vehicle play a crucial role in steering stability, comfort and safety of vehicle. The crosswind will affect the aerodynamic characteristics of vehicle. In this paper, the aerodynamic characteristics of ASMO model under steady crosswind is simulated by XFlow software, and the changes of aerodynamic characteristics under different steady crosswind are analyzed. It turned out that the asymmetry of wake flow field is enhanced with the increasing of crosswind, and the body surface pressure of windward is amplified, the six components of aerodynamic coefficient are also increased. It is found that the vehicle aerodynamic characteristics changed obviously under steady crosswind.


Sign in / Sign up

Export Citation Format

Share Document