scholarly journals Utilization of Palm Oil Mill Residue as Sustainable Pavement Materials: A Review

Author(s):  
N. S. A. Yaro ◽  
◽  
M. Napiah ◽  
M. H. Sutanto ◽  
M. R. Hainin ◽  
...  

The advances in industrial technology have led to a major rise in the amount and forms of residue, especially during the processing of agricultural products. With the paradigm shift towards renewable energy and sustainability, there is much emphasis on biomass energy around the world which generates an immense volume of residues yearly. These residues are burgeoning issues because they are not effectively managed and utilized. Hence, one solution is utilizing them in the pavement industry. This article focuses on palm oil mill residues that are abundantly available and discarded in Malaysia. This study evaluates published works of literature relating to the utilization of these residues like the Palm Oil Fiber (POF), Palm Oil Fuel Ash (POFA), and Palm Oil Clinker (POC) and Palm Kernel Shell (PKS) in the pavement industry. The outcome of the review acknowledges the greater sustainability potential of these residues with affirmative and satisfactory performance via the result of numerous research work. Also, with a reduction in CO2-emission, low radioactivity, and heavy metal leaching level. Therefore, the review suggests more exploration and utilization of the residue in the pavement industry since it promotes safety and harness sustainability.

2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
Mostafa Samadi ◽  
Mohamed A. Ismail ◽  
...  

This paper presents the utilization of palm oil fuel ash and oil palm kernel shell as cement and sand replacement, respectively in the production of palm oil fuel ash based mortar mixes as part of new and innovative materials in the construction industry. The study includes basic properties such as water absorption, density, compressive strength, and microstructure test with regards to variations in the mix design process. In order to get better performance in terms of strength development, the ash used was subjected to heat treatment and grounded to the size of less than 2 µm. High volume of 80% palm oil fuel ash was used as cement replacement, while 25%, 50%, 75%, and 100% of oil palm kernel shell was used as sand replacement. The results indicated that the density of the mortar decreases with increasing volume of oil palm kernel ash as sand replacement. Three different types of mortar were produced with different percentages of oil palm kernel shell, which was high strength, medium strength, and low strength lightweight mortars.


This chapter discusses the utilization of wastes in the form of palm oil fuel ash, oil palm kernel shell, and oil palm fibre in the production of mortar mixes as a part of new and innovative materials in construction industry. Detailed introduction is provided followed by a clear description of each waste and its effect when added to mortar mixes. Furthermore, a research study on the effect of palm oil fuel ash, palm oil kernel shell, palm oil fibre on mortar properties was carried out and the experimental program details are given under four subtitles. Splitting tensile strength and flexural strength were performed to test the engineering properties of mortar containing different types of waste. Results and discussion are provided for additional grasp. It is concluded that the inclusion of high-volume palm oil biomass waste can produce sustainable mortars with high strength and with more durability performance.


2015 ◽  
Vol 1113 ◽  
pp. 578-585 ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd Sam ◽  
Muhammad Aamer Rafique Bhutta ◽  
Nur Farhayu Ariffin ◽  
...  

The utilization of waste materials which are abundant and cheap, especially from clean resources, has become more pressing than ever. This paper, discusses the utilization of the wastes in the form of palm oil fuel ash and oil palm kernel shell in the production of mortar mixes as a part of new and innovative materials in construction industry. The studies include the basic properties including the morphology of the composite with regards to variations in the mix design process. In order to get a better performance in terms of strength development, the ash used has gone through heat treatment and ground up to the size less than 2µm. High volume of 60%, 80% and 100% palm oil fuel ash was used as cement replacement. The incorporation of more than 80% of palm oil biomass waste as cement and sand replacement has produced mortar having an improved compressive strength than normal mortar. In addition, the density of the mortar with biomass waste was less than normal mortar. Overall results have revealed that the inclusion of high volume palm oil biomass waste can produce mortar mix with high strength, good performance and most importantly more sustainable.


2016 ◽  
Vol 9 (2) ◽  
pp. 120-128
Author(s):  
Haspiadi Haspiadi ◽  
Kurniawaty Kurniawaty

Research of  the utilization solid waste of palm oil fuel ash from boiler as row materials  for manufacturing light concrete brick has been conducted. The main objective of this study is to investigate the potential use solid waste of palm oil fuel ash from palm oil mill boilers as row materials for manufacturing light concrete brick has recently attracted for an alternative environmentally sustainable application. In this study, light concrete brick made with various proportions of palm oil fuel ash from palm oil mill boilers and sand were fabricated and studied under laboratory scales. Percentage of palm oil fuel ash of 0% as a control,  10%, 20%, 30%, 40%, 50%, 60%, replacement  sand, wheras others materials such as Portland cement, lime, gypsum, foaming agent and aluminium with the numbers constant. The quality of light concreate brick   were applied followed by the compressive strength test, density and water absorption capacity. The study discovered that the compressive strength for all composition meet the recommended value to light structural of 6.89 MPa as prescribed in SNI 03-3449-2002. In the same manner density of light concrete brick for all proportion under the maximum density recommended value of 1400 Kg/m3 according to SNI 03-3449-2002. While water absorption capacity of increased by the increasing use of ashes. Therefore, palm oil fuel ash from boiler can be used as raw material for the light concrete brick which is  environmental friendly because using solid waste and also an alternative handling solid waste.ABSTRAKPenelitian pemanfaatan limbah padat abu cangkang dan serat kelapa sawit dari boiler sebagai bahan baku pembuatan bata beton ringan telah dilakukan. Tujuan dari penelitian ini adalah pemanfaatan limbah padat abu boiler berbahan bakar cangkang dan serat sebagai bahan pembuatan bata beton ringan sebagai salah satu alternatif pengelolaan lingkungan yang bekelanjutan. Dalam penelitian ini, bata beton ringan dibuat dengan berbagai komposisi abu boiler dan pasir yang diproduksi dalam  skala laboratorium. Persentase dari abu berturut-turut 0% sebagai kontrol, 10%, 20%, 30%, 40%, 50% dan 60% mensubtitusi pasir, sedangkan bahan lain yaitu semen, kapur, gypsum,  foaming  agent serta aluminium pasta dengan jumlah tetap. Mutu bata beton ringan yang diujikan adalah kuat tekan, bobot jenis dan daya serap air. Hasil penelitian menunjukkan bahwa kuat tekan untuk semua komposisi memenuhi batas minimum yang dipersyaratkan untuk stuktural ringan yaitu 6,89 MPa sesuai SNI 03-3449-2002. Demikian pula bobot jenis dari bata ringan yang dihasilkan masih dibawah dari batas maksimum yang direkomendasikan SNI 03-3449-2002 yaitu maksimal 1400 Kg/m3. Sedangkan daya serap air mengalami kenaikan dengan naiknya jumlah abu yang digunakan . Limbah padat abu boiler berbahan bakar cangkang dan serat sawit dapat dimanfaatkan sebagai bahan baku pembuatan bata beton ringan yang ramah lingkungan dengan memanfaatkan limbah dan menjadi salah satu alternatif pengelolaan limbah. Kata kunci :  Abu cangkang kelapa sawit,  bata beton ringan, bobot jenis,  daya serap air,  limbah,  kuat tekan


2014 ◽  
Vol 70 (5) ◽  
Author(s):  
Jamo Usman Hassan ◽  
Mohamad Zaky Noh ◽  
Zainal Arifin Ahmad

The increasing amount of disposed palm oil fuel ash (POFA) from palm oil industries has recently attracted significant attention for an alternative sustainable application. This paper presents the effects of the addition of a treated POFA on porcelain in terms of bending and compressive strength, as well as weight composition. POFA obtained from a palm oil mill was treated via sieving, grinding and heating at a temperature of 600°C for 90 minutes in order to the remove unburnt carbon and to improve the silica content of the POFA. Pellets made with various proportions of porcelain and POFA were fabricated and sintered at a temperature of 1200°C. The results reveal that the maximum bending strength and the compressive strength occurred at 8 wt% addition of POFA, Porcelain containing POFA has about 7% weight reduction compared with normal porcelain.  


2018 ◽  
Vol 34 ◽  
pp. 01008
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mostafa Samadi ◽  
Abdul Rahman Mohd. Sam ◽  
Nur Hafizah Abd Khalid ◽  
Noor Nabilah Sarbini ◽  
...  

This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.


2017 ◽  
Vol 889 ◽  
pp. 261-264 ◽  
Author(s):  
Norpadzlihatun Manap ◽  
Nor Izzah Muhamad ◽  
Kavitha Sandirasegaran

Concrete is one of the most important materials for construction industry. The material in the mixture of concrete includes cement, sand and coarse aggregate. Production of cement causes the air pollution from the emission of carbon dioxide to the air. This research studies the replacement of cement with palm oil fuel ash (POFA) in the concrete mixture. The objective of this research is to investigate the compressive strength of concrete and water absorption rate of concrete made from POFA and to compare the strength and absorption rate between conventional concrete and concrete made from POFA. This is to indicate whether the compressive strength and absorption rate are equivalent to the strength of conventional concrete. The methodology used in this research is experimental method and the palm oil fuel ash was taken from palm oil mill in Cha’ah, Johor, Malaysia. The results of this research are the specimens which contain 20% POFA has a compressive strength and water absorption rate comparable to conventional concrete.


Author(s):  
Noraishah Shafiqah Yacob ◽  
Hassan Mohamed ◽  
Abd Halim Shamsuddin

Renewable energy is a reliable solution for addressing global warming and fossil fuel depletion issues. Due to the abundance of biomass resources, such as palm oil wastes, which are currently underutilised, this is an opportunity for Malaysia to seize and implement this renewable energy solution for power generation. Palm oil mill wastes, such as empty fruit bunch (EFB), palm mesocarp fibre (PMF), and palm kernel shell (PKS), are worth to be investigated as a possible feedstock for combustion in thermal power plants. Co-combustion or co-firing of biomass in coal-fired thermal power plants offers a significant potential to reduce harmful emissions and represents a low cost and low-risk method. This paper aims to review and compare existing biomass thermal combustion technologies globally to evaluate the potential of utilising palm oil waste with coal. Before undergoing various pretreatment options, it is necessary to understand the feedstock characteristics for thermal power plant combustion. It is recommended to implement the combustion of palm oil wastes with coal in Malaysia to reduce harmful pollution. Based on the findings, Malaysia appears to be on the right track to optimise the use of palm oil wastes for electricity generation. The enhanced usage will reduce the negative impact of greenhouse gas (GHG) emissions.


2016 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
NorFaizah Jalani ◽  
AstimarAbdul Aziz ◽  
NoorshamsianaAbdul Wahab ◽  
WanHasamudin Wan Hassan ◽  
NahrulHayawin Zainal

Sign in / Sign up

Export Citation Format

Share Document